File size: 3,646 Bytes
aefc7d3
308e24c
 
bbdb1a2
 
308e24c
 
 
 
aefc7d3
bbdb1a2
308e24c
 
1aae4ac
308e24c
1aae4ac
 
 
 
e4bec07
 
 
 
 
 
 
 
1aae4ac
e4bec07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1aae4ac
 
 
308e24c
1aae4ac
308e24c
1aae4ac
308e24c
 
 
1aae4ac
308e24c
1aae4ac
308e24c
1aae4ac
308e24c
1aae4ac
308e24c
1aae4ac
308e24c
1aae4ac
308e24c
1aae4ac
308e24c
1aae4ac
308e24c
1aae4ac
308e24c
 
 
 
 
 
 
 
 
 
 
 
 
 
1aae4ac
308e24c
1aae4ac
308e24c
 
 
 
 
 
 
 
 
 
 
1aae4ac
 
308e24c
1aae4ac
308e24c
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
---
license: apache-2.0
base_model: meta-math/MetaMath-Mistral-7B
tags:
- axolotl
- generated_from_trainer
model-index:
- name: EulerMath-Mistral-7B
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.4.0`
```yaml
base_model: meta-math/MetaMath-Mistral-7B
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
is_mistral_derived_model: true

load_in_8bit: false
load_in_4bit: false
strict: false

chat_template: alpaca
datasets:
  - path: microsoft/orca-math-word-problems-200k
    type: alpaca_chat.load_qa
    conversation: alpaca

  - path: TIGER-Lab/MathInstruct
    type: alpaca
    conversation: alpaca

dataset_prepared_path: last_run_prepared
val_set_size: 0.005
#val_set_size: 0.0

output_dir: ./EulerMath-Mistral-7B-model

sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
eval_sample_packing: false

wandb_project: Euler
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
hub_model_id: Weyaxi/EulerMath-Mistral-7B

save_safetensors: true

gradient_accumulation_steps: 4
micro_batch_size: 2 # changed
num_epochs: 2
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.000005

train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 10
evals_per_epoch: 4 # changed
eval_table_size:
eval_table_max_new_tokens: 128
saves_per_epoch: 1 # changed
debug:

deepspeed: zero3_bf16.json
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
  bos_token: "<s>"
  eos_token: "</s>"
  unk_token: "<unk>"

```

</details><br>

# EulerMath-Mistral-7B

This model is a fine-tuned version of [meta-math/MetaMath-Mistral-7B](https://huggingface.co/meta-math/MetaMath-Mistral-7B) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1956

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 9
- gradient_accumulation_steps: 4
- total_train_batch_size: 72
- total_eval_batch_size: 18
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 2

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.707         | 0.0   | 1    | 0.9061          |
| 0.3011        | 0.25  | 68   | 0.3263          |
| 0.2585        | 0.5   | 136  | 0.2836          |
| 0.2352        | 0.75  | 204  | 0.2544          |
| 0.2192        | 1.0   | 272  | 0.2268          |
| 0.1527        | 1.23  | 340  | 0.2144          |
| 0.1452        | 1.48  | 408  | 0.2032          |
| 0.144         | 1.73  | 476  | 0.1970          |
| 0.1441        | 1.98  | 544  | 0.1956          |


### Framework versions

- Transformers 4.38.2
- Pytorch 2.1.2+cu118
- Datasets 2.18.0
- Tokenizers 0.15.0