File size: 3,646 Bytes
aefc7d3 308e24c bbdb1a2 308e24c aefc7d3 bbdb1a2 308e24c 1aae4ac 308e24c 1aae4ac e4bec07 1aae4ac e4bec07 1aae4ac 308e24c 1aae4ac 308e24c 1aae4ac 308e24c 1aae4ac 308e24c 1aae4ac 308e24c 1aae4ac 308e24c 1aae4ac 308e24c 1aae4ac 308e24c 1aae4ac 308e24c 1aae4ac 308e24c 1aae4ac 308e24c 1aae4ac 308e24c 1aae4ac 308e24c 1aae4ac 308e24c 1aae4ac 308e24c 1aae4ac 308e24c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
---
license: apache-2.0
base_model: meta-math/MetaMath-Mistral-7B
tags:
- axolotl
- generated_from_trainer
model-index:
- name: EulerMath-Mistral-7B
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.0`
```yaml
base_model: meta-math/MetaMath-Mistral-7B
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
is_mistral_derived_model: true
load_in_8bit: false
load_in_4bit: false
strict: false
chat_template: alpaca
datasets:
- path: microsoft/orca-math-word-problems-200k
type: alpaca_chat.load_qa
conversation: alpaca
- path: TIGER-Lab/MathInstruct
type: alpaca
conversation: alpaca
dataset_prepared_path: last_run_prepared
val_set_size: 0.005
#val_set_size: 0.0
output_dir: ./EulerMath-Mistral-7B-model
sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
eval_sample_packing: false
wandb_project: Euler
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
hub_model_id: Weyaxi/EulerMath-Mistral-7B
save_safetensors: true
gradient_accumulation_steps: 4
micro_batch_size: 2 # changed
num_epochs: 2
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.000005
train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 10
evals_per_epoch: 4 # changed
eval_table_size:
eval_table_max_new_tokens: 128
saves_per_epoch: 1 # changed
debug:
deepspeed: zero3_bf16.json
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
bos_token: "<s>"
eos_token: "</s>"
unk_token: "<unk>"
```
</details><br>
# EulerMath-Mistral-7B
This model is a fine-tuned version of [meta-math/MetaMath-Mistral-7B](https://huggingface.co/meta-math/MetaMath-Mistral-7B) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1956
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 9
- gradient_accumulation_steps: 4
- total_train_batch_size: 72
- total_eval_batch_size: 18
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.707 | 0.0 | 1 | 0.9061 |
| 0.3011 | 0.25 | 68 | 0.3263 |
| 0.2585 | 0.5 | 136 | 0.2836 |
| 0.2352 | 0.75 | 204 | 0.2544 |
| 0.2192 | 1.0 | 272 | 0.2268 |
| 0.1527 | 1.23 | 340 | 0.2144 |
| 0.1452 | 1.48 | 408 | 0.2032 |
| 0.144 | 1.73 | 476 | 0.1970 |
| 0.1441 | 1.98 | 544 | 0.1956 |
### Framework versions
- Transformers 4.38.2
- Pytorch 2.1.2+cu118
- Datasets 2.18.0
- Tokenizers 0.15.0
|