File size: 3,281 Bytes
1004f4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25a69ee
 
1004f4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5cdba00
 
 
1004f4a
 
 
 
 
5cdba00
1004f4a
 
 
 
 
 
d8b351c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1004f4a
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: distilhubert-finetuned-gtzan
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilhubert-finetuned-gtzan

This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7667
- Accuracy: 0.88

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 30
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 2.1524        | 1.0   | 225  | 2.0279          | 0.45     |
| 1.2284        | 2.0   | 450  | 1.3462          | 0.62     |
| 1.014         | 3.0   | 675  | 0.9385          | 0.71     |
| 1.2816        | 4.0   | 900  | 0.8428          | 0.75     |
| 0.3312        | 5.0   | 1125 | 0.5206          | 0.83     |
| 0.7004        | 6.0   | 1350 | 0.9608          | 0.76     |
| 0.0515        | 7.0   | 1575 | 0.6214          | 0.85     |
| 0.0114        | 8.0   | 1800 | 0.7193          | 0.83     |
| 0.0032        | 9.0   | 2025 | 0.7997          | 0.86     |
| 0.0021        | 10.0  | 2250 | 1.0831          | 0.81     |
| 0.0059        | 11.0  | 2475 | 0.9561          | 0.83     |
| 0.0011        | 12.0  | 2700 | 0.7667          | 0.88     |
| 0.0008        | 13.0  | 2925 | 0.8389          | 0.87     |
| 0.0007        | 14.0  | 3150 | 0.8570          | 0.87     |
| 0.0006        | 15.0  | 3375 | 0.8778          | 0.86     |
| 0.0005        | 16.0  | 3600 | 0.9170          | 0.87     |
| 0.0004        | 17.0  | 3825 | 0.9422          | 0.87     |
| 0.0003        | 18.0  | 4050 | 0.9408          | 0.87     |
| 0.0005        | 19.0  | 4275 | 0.8940          | 0.87     |
| 0.0003        | 20.0  | 4500 | 0.9724          | 0.86     |
| 0.0003        | 21.0  | 4725 | 0.8904          | 0.85     |
| 0.0002        | 22.0  | 4950 | 0.9573          | 0.86     |
| 0.0002        | 23.0  | 5175 | 0.9292          | 0.87     |
| 0.0002        | 24.0  | 5400 | 0.9209          | 0.86     |
| 0.0002        | 25.0  | 5625 | 0.9184          | 0.86     |
| 0.0002        | 26.0  | 5850 | 0.9005          | 0.85     |
| 0.0002        | 27.0  | 6075 | 0.9656          | 0.86     |
| 0.0002        | 28.0  | 6300 | 0.9685          | 0.86     |
| 0.0002        | 29.0  | 6525 | 0.9810          | 0.86     |
| 0.0002        | 30.0  | 6750 | 0.9860          | 0.86     |


### Framework versions

- Transformers 4.29.2
- Pytorch 1.13.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3