File size: 2,864 Bytes
d68ee66
 
 
101fbea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
---
license: mit
---
# 0428

This model is a fine-tuned version of [../../models/Qwen1.5-7B-sft-0425](https://huggingface.co/../../models/Qwen1.5-7B-sft-0425) on the alpaca_formatted_review_new_data_greater_7 dataset.
It achieves the following results on the evaluation set:

- Loss: 1.0733

## Model description

Qwen1.5 is the beta version of Qwen2, a transformer-based decoder-only language model pretrained on a large amount of data. In comparison with the previous released Qwen, the improvements include:

* 8 model sizes, including 0.5B, 1.8B, 4B, 7B, 14B, 32B and 72B dense models, and an MoE model of 14B with 2.7B activated;
* Significant performance improvement in Chat models;
* Multilingual support of both base and chat models;
* Stable support of 32K context length for models of all sizes
* No need of `trust_remote_code`.

For more details, please refer to the [blog post](https://qwenlm.github.io/blog/qwen1.5/) and [GitHub repo](https://github.com/QwenLM/Qwen1.5).

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:

- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- total_eval_batch_size: 2
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- num_epochs: 5.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss |
| :-----------: | :---: | :--: | :-------------: |
|    0.8554     | 0.25  |  10  |     1.1541      |
|    0.6139     |  0.5  |  20  |     1.1258      |
|     0.629     | 0.75  |  30  |     1.1057      |
|    0.7943     |  1.0  |  40  |     1.0993      |
|    0.6658     | 1.25  |  50  |     1.0964      |
|     0.778     |  1.5  |  60  |     1.0892      |
|     0.593     | 1.75  |  70  |     1.0868      |
|    0.8847     |  2.0  |  80  |     1.0816      |
|    0.5067     | 2.25  |  90  |     1.0806      |
|    0.9706     |  2.5  | 100  |     1.0789      |
|    0.7302     | 2.75  | 110  |     1.0763      |
|    0.6855     |  3.0  | 120  |     1.0768      |
|    0.4358     | 3.25  | 130  |     1.0754      |
|    0.5777     |  3.5  | 140  |     1.0740      |
|    0.5687     | 3.75  | 150  |     1.0732      |
|    0.6462     |  4.0  | 160  |     1.0732      |
|    0.5465     | 4.25  | 170  |     1.0733      |
|    0.7926     |  4.5  | 180  |     1.0737      |
|    0.4968     | 4.75  | 190  |     1.0735      |
|    0.6406     |  5.0  | 200  |     1.0733      |


### Framework versions

- PEFT 0.10.0
- Transformers 4.40.0
- Pytorch 2.1.0+cu121
- Datasets 2.14.5
- Tokenizers 0.19.1