SegFormer_b5_11
This model is a fine-tuned version of nvidia/segformer-b5-finetuned-cityscapes-1024-1024 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.8010
- Mean Iou: 0.7954
- Mean Accuracy: 0.8798
- Overall Accuracy: 0.9636
- Accuracy Road: 0.9913
- Accuracy Sidewalk: 0.9403
- Accuracy Building: 0.9629
- Accuracy Wall: 0.7410
- Accuracy Fence: 0.7431
- Accuracy Pole: 0.7549
- Accuracy Traffic light: 0.8752
- Accuracy Traffic sign: 0.9026
- Accuracy Vegetation: 0.9649
- Accuracy Terrain: 0.7458
- Accuracy Sky: 0.9823
- Accuracy Person: 0.9127
- Accuracy Rider: 0.7910
- Accuracy Car: 0.9800
- Accuracy Truck: 0.8932
- Accuracy Bus: 0.9593
- Accuracy Train: 0.8554
- Accuracy Motorcycle: 0.8280
- Accuracy Bicycle: 0.8927
- Iou Road: 0.9853
- Iou Sidewalk: 0.8769
- Iou Building: 0.9294
- Iou Wall: 0.6725
- Iou Fence: 0.6481
- Iou Pole: 0.6122
- Iou Traffic light: 0.7011
- Iou Traffic sign: 0.8023
- Iou Vegetation: 0.9259
- Iou Terrain: 0.6490
- Iou Sky: 0.9504
- Iou Person: 0.8085
- Iou Rider: 0.6295
- Iou Car: 0.9521
- Iou Truck: 0.8505
- Iou Bus: 0.9051
- Iou Train: 0.7672
- Iou Motorcycle: 0.6727
- Iou Bicycle: 0.7743
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 9e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 20
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Accuracy Bicycle | Accuracy Building | Accuracy Bus | Accuracy Car | Accuracy Fence | Accuracy Motorcycle | Accuracy Person | Accuracy Pole | Accuracy Rider | Accuracy Road | Accuracy Sidewalk | Accuracy Sky | Accuracy Terrain | Accuracy Traffic light | Accuracy Traffic sign | Accuracy Train | Accuracy Truck | Accuracy Vegetation | Accuracy Wall | Iou Bicycle | Iou Building | Iou Bus | Iou Car | Iou Fence | Iou Motorcycle | Iou Person | Iou Pole | Iou Rider | Iou Road | Iou Sidewalk | Iou Sky | Iou Terrain | Iou Traffic light | Iou Traffic sign | Iou Train | Iou Truck | Iou Vegetation | Iou Wall | Validation Loss | Mean Accuracy | Mean Iou | Overall Accuracy |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.8456 | 0.5376 | 100 | 0.8747 | 0.9607 | 0.9437 | 0.9775 | 0.7085 | 0.7599 | 0.9048 | 0.7455 | 0.7610 | 0.9906 | 0.9288 | 0.9840 | 0.7789 | 0.8427 | 0.8786 | 0.8887 | 0.9006 | 0.9608 | 0.6635 | 0.7535 | 0.9230 | 0.8894 | 0.9483 | 0.5970 | 0.6374 | 0.7836 | 0.5859 | 0.5740 | 0.9834 | 0.8684 | 0.9456 | 0.6764 | 0.6691 | 0.7648 | 0.7901 | 0.8296 | 0.9231 | 0.5864 | 0.8201 | 0.8660 | 0.7752 | 0.9602 |
0.7465 | 1.0753 | 200 | 0.8953 | 0.9613 | 0.9506 | 0.9774 | 0.7230 | 0.8236 | 0.9016 | 0.7375 | 0.7563 | 0.9918 | 0.9356 | 0.9811 | 0.7888 | 0.8609 | 0.8764 | 0.8912 | 0.8998 | 0.9618 | 0.6790 | 0.7569 | 0.9234 | 0.8931 | 0.9516 | 0.6045 | 0.6414 | 0.7954 | 0.5904 | 0.5894 | 0.9854 | 0.8754 | 0.9497 | 0.6775 | 0.6721 | 0.7699 | 0.7690 | 0.8615 | 0.9251 | 0.5979 | 0.8066 | 0.8733 | 0.7805 | 0.9615 |
0.8764 | 1.6129 | 300 | 0.9008 | 0.9612 | 0.9433 | 0.9793 | 0.7547 | 0.8097 | 0.9005 | 0.7511 | 0.7752 | 0.9903 | 0.9396 | 0.9839 | 0.7864 | 0.8408 | 0.8819 | 0.9089 | 0.9136 | 0.9622 | 0.6706 | 0.7598 | 0.9246 | 0.8930 | 0.9510 | 0.6305 | 0.6610 | 0.7979 | 0.5977 | 0.6033 | 0.9851 | 0.8752 | 0.9470 | 0.6769 | 0.6801 | 0.7820 | 0.7666 | 0.8635 | 0.9255 | 0.6064 | 0.8097 | 0.8765 | 0.7856 | 0.9620 |
0.7359 | 2.1505 | 400 | 0.8901 | 0.9607 | 0.9386 | 0.9761 | 0.7167 | 0.8253 | 0.9077 | 0.7430 | 0.7825 | 0.9905 | 0.9391 | 0.9838 | 0.7778 | 0.8542 | 0.8748 | 0.8920 | 0.9048 | 0.9661 | 0.6947 | 0.7636 | 0.9245 | 0.8868 | 0.9512 | 0.6363 | 0.6503 | 0.7985 | 0.6001 | 0.6098 | 0.9845 | 0.8719 | 0.9484 | 0.6744 | 0.6749 | 0.7769 | 0.7577 | 0.8573 | 0.9253 | 0.6225 | 0.8090 | 0.8747 | 0.7850 | 0.9620 |
0.7919 | 2.6882 | 500 | 0.9014 | 0.9609 | 0.9466 | 0.9799 | 0.7401 | 0.8459 | 0.9047 | 0.7518 | 0.7771 | 0.9908 | 0.9401 | 0.9845 | 0.7713 | 0.8783 | 0.8932 | 0.8925 | 0.8930 | 0.9611 | 0.7098 | 0.7544 | 0.9257 | 0.8922 | 0.9507 | 0.6480 | 0.6348 | 0.8013 | 0.6025 | 0.6135 | 0.9848 | 0.8734 | 0.9477 | 0.6692 | 0.6717 | 0.7750 | 0.7866 | 0.8403 | 0.9260 | 0.6263 | 0.8023 | 0.8802 | 0.7855 | 0.9622 |
0.7191 | 3.2258 | 600 | 0.8953 | 0.9579 | 0.9395 | 0.9787 | 0.7650 | 0.8355 | 0.9048 | 0.7311 | 0.7800 | 0.9899 | 0.9404 | 0.9851 | 0.7621 | 0.8686 | 0.8920 | 0.8988 | 0.8892 | 0.9679 | 0.6577 | 0.7628 | 0.9246 | 0.8904 | 0.9507 | 0.6388 | 0.6582 | 0.7989 | 0.6031 | 0.6143 | 0.9843 | 0.8700 | 0.9461 | 0.6666 | 0.6777 | 0.7833 | 0.7473 | 0.8522 | 0.9246 | 0.5967 | 0.8065 | 0.8758 | 0.7837 | 0.9617 |
0.7745 | 3.7634 | 700 | 0.8943 | 0.9637 | 0.9493 | 0.9785 | 0.7420 | 0.8280 | 0.9097 | 0.7325 | 0.8065 | 0.9904 | 0.9360 | 0.9842 | 0.7625 | 0.8534 | 0.8953 | 0.8598 | 0.9001 | 0.9622 | 0.7256 | 0.7607 | 0.9268 | 0.8841 | 0.9506 | 0.6273 | 0.6433 | 0.7975 | 0.6022 | 0.6199 | 0.9847 | 0.8724 | 0.9478 | 0.6619 | 0.6930 | 0.7912 | 0.7575 | 0.8396 | 0.9258 | 0.6443 | 0.8021 | 0.8776 | 0.7858 | 0.9623 |
0.7367 | 4.3011 | 800 | 0.9093 | 0.9618 | 0.9449 | 0.9781 | 0.7500 | 0.8337 | 0.9044 | 0.7514 | 0.7928 | 0.9901 | 0.9353 | 0.9827 | 0.7850 | 0.8725 | 0.8896 | 0.8837 | 0.8948 | 0.9617 | 0.7004 | 0.7460 | 0.9268 | 0.8929 | 0.9504 | 0.6400 | 0.6321 | 0.8002 | 0.6050 | 0.6170 | 0.9840 | 0.8686 | 0.9485 | 0.6595 | 0.6862 | 0.7912 | 0.7854 | 0.8475 | 0.9246 | 0.6433 | 0.7997 | 0.8801 | 0.7868 | 0.9619 |
0.7503 | 4.8387 | 900 | 0.8817 | 0.9648 | 0.9511 | 0.9766 | 0.7600 | 0.8513 | 0.9242 | 0.7315 | 0.7496 | 0.9902 | 0.9400 | 0.9846 | 0.7469 | 0.8654 | 0.8977 | 0.8548 | 0.8720 | 0.9612 | 0.7353 | 0.7647 | 0.9296 | 0.8866 | 0.9496 | 0.6262 | 0.6102 | 0.7943 | 0.6053 | 0.6080 | 0.9846 | 0.8724 | 0.9470 | 0.6628 | 0.6888 | 0.7974 | 0.7076 | 0.8258 | 0.9255 | 0.6435 | 0.7955 | 0.8757 | 0.7805 | 0.9625 |
0.6957 | 5.3763 | 1000 | 0.8892 | 0.9658 | 0.9637 | 0.9769 | 0.7331 | 0.8256 | 0.9122 | 0.7369 | 0.7667 | 0.9905 | 0.9398 | 0.9807 | 0.7519 | 0.8553 | 0.8957 | 0.8498 | 0.8989 | 0.9613 | 0.7224 | 0.7631 | 0.9276 | 0.8939 | 0.9507 | 0.6321 | 0.6350 | 0.7996 | 0.6024 | 0.6125 | 0.9845 | 0.8712 | 0.9512 | 0.6634 | 0.6916 | 0.7959 | 0.6943 | 0.8423 | 0.9257 | 0.6415 | 0.7978 | 0.8746 | 0.7831 | 0.9625 |
0.7057 | 5.9140 | 1100 | 0.8826 | 0.9633 | 0.9504 | 0.9792 | 0.7497 | 0.7977 | 0.9110 | 0.7324 | 0.8061 | 0.9915 | 0.9366 | 0.9827 | 0.7486 | 0.8732 | 0.8910 | 0.8817 | 0.8972 | 0.9635 | 0.7321 | 0.7690 | 0.9281 | 0.8900 | 0.9509 | 0.6408 | 0.6762 | 0.8004 | 0.6055 | 0.6196 | 0.9849 | 0.8746 | 0.9519 | 0.6451 | 0.6913 | 0.7928 | 0.7596 | 0.8476 | 0.9252 | 0.6504 | 0.7907 | 0.8774 | 0.7897 | 0.9628 |
0.7232 | 6.4516 | 1200 | 0.9046 | 0.9633 | 0.9497 | 0.9790 | 0.7542 | 0.8296 | 0.9038 | 0.7324 | 0.7938 | 0.9907 | 0.9399 | 0.9861 | 0.7605 | 0.8725 | 0.9006 | 0.8611 | 0.8941 | 0.9620 | 0.7467 | 0.7650 | 0.9290 | 0.8919 | 0.9512 | 0.6442 | 0.6748 | 0.8036 | 0.6041 | 0.6233 | 0.9850 | 0.8746 | 0.9474 | 0.6523 | 0.6870 | 0.7915 | 0.7657 | 0.8481 | 0.9249 | 0.6596 | 0.7927 | 0.8802 | 0.7907 | 0.9629 |
0.7168 | 6.9892 | 1300 | 0.8830 | 0.9650 | 0.9548 | 0.9790 | 0.7742 | 0.8130 | 0.9006 | 0.7287 | 0.8121 | 0.9913 | 0.9380 | 0.9831 | 0.7694 | 0.8789 | 0.8839 | 0.8345 | 0.9056 | 0.9628 | 0.7568 | 0.7677 | 0.9305 | 0.8870 | 0.9509 | 0.6559 | 0.6532 | 0.8054 | 0.6054 | 0.6168 | 0.9851 | 0.8745 | 0.9513 | 0.6673 | 0.6920 | 0.7904 | 0.7415 | 0.8340 | 0.9259 | 0.6668 | 0.7881 | 0.8797 | 0.7896 | 0.9634 |
0.8144 | 7.5269 | 1400 | 0.8928 | 0.9669 | 0.9577 | 0.9762 | 0.7470 | 0.8043 | 0.9186 | 0.7260 | 0.7572 | 0.9909 | 0.9455 | 0.9835 | 0.7529 | 0.8334 | 0.8796 | 0.8693 | 0.9011 | 0.9599 | 0.7138 | 0.7656 | 0.9277 | 0.8981 | 0.9519 | 0.6414 | 0.6424 | 0.8027 | 0.6054 | 0.6195 | 0.9852 | 0.8744 | 0.9491 | 0.6484 | 0.6973 | 0.7954 | 0.7597 | 0.8504 | 0.9256 | 0.6275 | 0.7988 | 0.8724 | 0.7878 | 0.9628 |
0.674 | 8.0645 | 1500 | 0.8897 | 0.9579 | 0.9578 | 0.9795 | 0.7540 | 0.8216 | 0.9106 | 0.7614 | 0.8117 | 0.9894 | 0.9419 | 0.9789 | 0.7606 | 0.8837 | 0.9095 | 0.8278 | 0.9047 | 0.9660 | 0.7330 | 0.7675 | 0.9271 | 0.8821 | 0.9497 | 0.6487 | 0.6595 | 0.8033 | 0.6039 | 0.6307 | 0.9845 | 0.8710 | 0.9505 | 0.6458 | 0.6866 | 0.7881 | 0.7477 | 0.8369 | 0.9245 | 0.6700 | 0.7934 | 0.8810 | 0.7883 | 0.9623 |
0.7338 | 8.6022 | 1600 | 0.9060 | 0.9592 | 0.9399 | 0.9803 | 0.7338 | 0.8360 | 0.9070 | 0.7568 | 0.7956 | 0.9905 | 0.9415 | 0.9804 | 0.7382 | 0.8807 | 0.9113 | 0.8447 | 0.8667 | 0.9657 | 0.7684 | 0.7642 | 0.9283 | 0.8809 | 0.9501 | 0.6497 | 0.6348 | 0.8044 | 0.6017 | 0.6277 | 0.9852 | 0.8749 | 0.9497 | 0.6511 | 0.6893 | 0.7935 | 0.7579 | 0.8287 | 0.9252 | 0.6553 | 0.8012 | 0.8791 | 0.7870 | 0.9627 |
0.732 | 9.1398 | 1700 | 0.9015 | 0.9619 | 0.9567 | 0.9780 | 0.7595 | 0.7503 | 0.9102 | 0.7426 | 0.8075 | 0.9915 | 0.9402 | 0.9811 | 0.7447 | 0.8711 | 0.8977 | 0.8600 | 0.8946 | 0.9651 | 0.7170 | 0.7647 | 0.9284 | 0.8980 | 0.9522 | 0.6496 | 0.6533 | 0.8081 | 0.6072 | 0.6366 | 0.9856 | 0.8772 | 0.9515 | 0.6495 | 0.6977 | 0.7988 | 0.7542 | 0.8434 | 0.9246 | 0.6266 | 0.7934 | 0.8753 | 0.7899 | 0.9631 |
0.7185 | 9.6774 | 1800 | 0.8829 | 0.9621 | 0.9505 | 0.9795 | 0.7833 | 0.8020 | 0.9157 | 0.7461 | 0.7981 | 0.9909 | 0.9382 | 0.9832 | 0.7786 | 0.8596 | 0.8963 | 0.8676 | 0.8832 | 0.9603 | 0.7716 | 0.7691 | 0.9299 | 0.8980 | 0.9516 | 0.6466 | 0.6670 | 0.8060 | 0.6063 | 0.6225 | 0.9849 | 0.8739 | 0.9499 | 0.6512 | 0.6990 | 0.7985 | 0.7668 | 0.8446 | 0.9247 | 0.6516 | 0.7952 | 0.8816 | 0.7917 | 0.9629 |
0.7091 | 10.2151 | 1900 | 0.8912 | 0.9648 | 0.9520 | 0.9794 | 0.7253 | 0.8268 | 0.9211 | 0.7488 | 0.7938 | 0.9911 | 0.9429 | 0.9824 | 0.7679 | 0.8810 | 0.8992 | 0.8435 | 0.8940 | 0.9610 | 0.7557 | 0.7716 | 0.9294 | 0.8991 | 0.9525 | 0.6459 | 0.6698 | 0.8056 | 0.6074 | 0.6445 | 0.9854 | 0.8761 | 0.9509 | 0.6601 | 0.6914 | 0.7984 | 0.7805 | 0.8535 | 0.9260 | 0.6588 | 0.7921 | 0.8801 | 0.7951 | 0.9635 |
0.6826 | 10.7527 | 2000 | 0.8785 | 0.9637 | 0.9457 | 0.9801 | 0.6996 | 0.8356 | 0.9104 | 0.7530 | 0.8009 | 0.9906 | 0.9428 | 0.9805 | 0.7494 | 0.8558 | 0.8981 | 0.8121 | 0.8620 | 0.9660 | 0.7376 | 0.7694 | 0.9284 | 0.8812 | 0.9508 | 0.6287 | 0.6513 | 0.8094 | 0.6060 | 0.6381 | 0.9849 | 0.8741 | 0.9528 | 0.6593 | 0.7036 | 0.7983 | 0.7298 | 0.8311 | 0.9256 | 0.6666 | 0.7996 | 0.8717 | 0.7889 | 0.9631 |
0.7622 | 11.2903 | 2100 | 0.8916 | 0.9630 | 0.9596 | 0.9799 | 0.7587 | 0.7991 | 0.9095 | 0.7388 | 0.8078 | 0.9907 | 0.9427 | 0.9823 | 0.7546 | 0.8863 | 0.8897 | 0.8390 | 0.8936 | 0.9643 | 0.7664 | 0.7684 | 0.9306 | 0.8943 | 0.9520 | 0.6393 | 0.6828 | 0.8097 | 0.6067 | 0.6298 | 0.9851 | 0.8743 | 0.9516 | 0.6589 | 0.6909 | 0.7975 | 0.7664 | 0.8493 | 0.9261 | 0.6653 | 0.7964 | 0.8799 | 0.7936 | 0.9634 |
0.7119 | 11.8280 | 2200 | 0.8803 | 0.9621 | 0.9525 | 0.9806 | 0.7773 | 0.7930 | 0.9044 | 0.7455 | 0.8255 | 0.9906 | 0.9395 | 0.9807 | 0.7635 | 0.8761 | 0.8934 | 0.8577 | 0.8865 | 0.9642 | 0.7259 | 0.7688 | 0.9300 | 0.8945 | 0.9511 | 0.6536 | 0.6718 | 0.8069 | 0.6057 | 0.6263 | 0.9848 | 0.8726 | 0.9509 | 0.6453 | 0.6942 | 0.7977 | 0.7797 | 0.8432 | 0.9247 | 0.6438 | 0.7983 | 0.8789 | 0.7919 | 0.9629 |
0.7236 | 12.3656 | 2300 | 0.8938 | 0.9609 | 0.9551 | 0.9794 | 0.7626 | 0.8259 | 0.9156 | 0.7575 | 0.7791 | 0.9907 | 0.9408 | 0.9813 | 0.7429 | 0.8790 | 0.9012 | 0.8580 | 0.8974 | 0.9643 | 0.7481 | 0.7711 | 0.9289 | 0.8987 | 0.9510 | 0.6524 | 0.6577 | 0.8062 | 0.6050 | 0.6293 | 0.9848 | 0.8727 | 0.9500 | 0.6531 | 0.6968 | 0.8004 | 0.7965 | 0.8465 | 0.9252 | 0.6718 | 0.7972 | 0.8807 | 0.7946 | 0.9631 |
0.745 | 12.9032 | 2400 | 0.8928 | 0.9615 | 0.9572 | 0.9790 | 0.7629 | 0.8120 | 0.9063 | 0.7594 | 0.8244 | 0.9913 | 0.9409 | 0.9826 | 0.7544 | 0.8728 | 0.8969 | 0.8665 | 0.8985 | 0.9648 | 0.7048 | 0.7716 | 0.9300 | 0.8993 | 0.9510 | 0.6337 | 0.6622 | 0.8115 | 0.6105 | 0.6402 | 0.9854 | 0.8765 | 0.9505 | 0.6522 | 0.7016 | 0.7979 | 0.7610 | 0.8434 | 0.9258 | 0.6376 | 0.7979 | 0.8805 | 0.7917 | 0.9633 |
0.7197 | 13.4409 | 2500 | 0.8929 | 0.9647 | 0.9573 | 0.9787 | 0.7667 | 0.8368 | 0.9116 | 0.7487 | 0.8204 | 0.9919 | 0.9397 | 0.9835 | 0.7415 | 0.8728 | 0.8990 | 0.8259 | 0.8953 | 0.9609 | 0.7300 | 0.7751 | 0.9307 | 0.8883 | 0.9520 | 0.6490 | 0.6705 | 0.8093 | 0.6107 | 0.6402 | 0.9853 | 0.8744 | 0.9496 | 0.6444 | 0.6988 | 0.8019 | 0.7652 | 0.8506 | 0.9256 | 0.6509 | 0.7964 | 0.8799 | 0.7933 | 0.9635 |
0.6799 | 13.9785 | 2600 | 0.8919 | 0.9614 | 0.9597 | 0.9801 | 0.7438 | 0.8240 | 0.9139 | 0.7602 | 0.8042 | 0.9915 | 0.9367 | 0.9835 | 0.7437 | 0.8714 | 0.8954 | 0.8393 | 0.8935 | 0.9642 | 0.7542 | 0.7718 | 0.9294 | 0.8916 | 0.9516 | 0.6441 | 0.6707 | 0.8078 | 0.6099 | 0.6347 | 0.9848 | 0.8734 | 0.9496 | 0.6567 | 0.6986 | 0.7943 | 0.7562 | 0.8487 | 0.9260 | 0.6703 | 0.7988 | 0.8796 | 0.7932 | 0.9632 |
0.7878 | 14.5161 | 2700 | 0.8927 | 0.9620 | 0.9583 | 0.9793 | 0.7536 | 0.8011 | 0.9151 | 0.7567 | 0.7931 | 0.9914 | 0.9375 | 0.9821 | 0.7587 | 0.8762 | 0.8942 | 0.8430 | 0.8929 | 0.9650 | 0.7350 | 0.7745 | 0.9292 | 0.8971 | 0.9516 | 0.6475 | 0.6774 | 0.8057 | 0.6080 | 0.6251 | 0.9852 | 0.8776 | 0.9497 | 0.6536 | 0.6989 | 0.8010 | 0.7671 | 0.8465 | 0.9258 | 0.6661 | 0.7984 | 0.8783 | 0.7941 | 0.9634 |
0.7148 | 15.0538 | 2800 | 0.8931 | 0.9628 | 0.9587 | 0.9797 | 0.7453 | 0.8243 | 0.9091 | 0.7500 | 0.7917 | 0.9916 | 0.9399 | 0.9812 | 0.7571 | 0.8768 | 0.8993 | 0.8510 | 0.8947 | 0.9654 | 0.7297 | 0.7730 | 0.9296 | 0.9011 | 0.9522 | 0.6505 | 0.6674 | 0.8061 | 0.6091 | 0.6236 | 0.9853 | 0.8778 | 0.9504 | 0.6558 | 0.7039 | 0.7955 | 0.7517 | 0.8510 | 0.9259 | 0.6642 | 0.7981 | 0.8790 | 0.7934 | 0.9636 |
0.7285 | 15.5914 | 2900 | 0.8943 | 0.9606 | 0.9532 | 0.9801 | 0.7467 | 0.8390 | 0.9101 | 0.7498 | 0.7744 | 0.9914 | 0.9405 | 0.9805 | 0.7476 | 0.8748 | 0.8958 | 0.8665 | 0.8940 | 0.9672 | 0.7377 | 0.7741 | 0.9296 | 0.9035 | 0.9517 | 0.6470 | 0.6514 | 0.8072 | 0.6080 | 0.6198 | 0.9852 | 0.8764 | 0.9519 | 0.6497 | 0.7023 | 0.7972 | 0.7651 | 0.8472 | 0.9251 | 0.6624 | 0.7999 | 0.8792 | 0.7924 | 0.9634 |
0.7323 | 16.1290 | 3000 | 0.8910 | 0.9625 | 0.9586 | 0.9793 | 0.7261 | 0.8325 | 0.9114 | 0.7610 | 0.7587 | 0.9920 | 0.9380 | 0.9820 | 0.7519 | 0.8684 | 0.8963 | 0.8765 | 0.8963 | 0.9653 | 0.7514 | 0.7733 | 0.9293 | 0.9072 | 0.9525 | 0.6437 | 0.6599 | 0.8056 | 0.6113 | 0.6173 | 0.9856 | 0.8784 | 0.9510 | 0.6500 | 0.7041 | 0.8001 | 0.7632 | 0.8499 | 0.9257 | 0.6764 | 0.8014 | 0.8789 | 0.7939 | 0.9636 |
0.7061 | 16.6667 | 3100 | 0.8921 | 0.9628 | 0.9597 | 0.9798 | 0.7371 | 0.8213 | 0.9142 | 0.7492 | 0.7705 | 0.9918 | 0.9378 | 0.9825 | 0.7506 | 0.8748 | 0.8998 | 0.8767 | 0.8934 | 0.9655 | 0.7478 | 0.7745 | 0.9296 | 0.9068 | 0.9519 | 0.6456 | 0.6716 | 0.8063 | 0.6108 | 0.6240 | 0.9854 | 0.8777 | 0.9500 | 0.6536 | 0.6998 | 0.8011 | 0.7769 | 0.8482 | 0.9259 | 0.6744 | 0.7985 | 0.8793 | 0.7955 | 0.9637 |
0.6841 | 17.2043 | 3200 | 0.8868 | 0.9633 | 0.9550 | 0.9794 | 0.7299 | 0.8301 | 0.9135 | 0.7500 | 0.7975 | 0.9912 | 0.9429 | 0.9835 | 0.7561 | 0.8647 | 0.9024 | 0.8522 | 0.8900 | 0.9640 | 0.7625 | 0.7730 | 0.9300 | 0.9052 | 0.9521 | 0.6484 | 0.6691 | 0.8070 | 0.6104 | 0.6292 | 0.9854 | 0.8775 | 0.9497 | 0.6519 | 0.7022 | 0.8053 | 0.7726 | 0.8495 | 0.9257 | 0.6717 | 0.8015 | 0.8797 | 0.7956 | 0.9637 |
0.6523 | 17.7419 | 3300 | 0.8919 | 0.9617 | 0.9595 | 0.9802 | 0.7629 | 0.8459 | 0.9139 | 0.7584 | 0.7935 | 0.9921 | 0.9339 | 0.9828 | 0.7501 | 0.8744 | 0.8993 | 0.8529 | 0.8921 | 0.9652 | 0.7499 | 0.7733 | 0.9304 | 0.9021 | 0.9519 | 0.6569 | 0.6581 | 0.8088 | 0.6126 | 0.6330 | 0.9853 | 0.8772 | 0.9501 | 0.6491 | 0.7004 | 0.8028 | 0.7517 | 0.8487 | 0.9258 | 0.6701 | 0.7975 | 0.8821 | 0.7941 | 0.9637 |
0.723 | 18.2796 | 3400 | 0.8018 | 0.7947 | 0.8804 | 0.9635 | 0.9910 | 0.9418 | 0.9621 | 0.7371 | 0.7366 | 0.7561 | 0.8741 | 0.9049 | 0.9654 | 0.7434 | 0.9822 | 0.9172 | 0.7981 | 0.9795 | 0.8968 | 0.9583 | 0.8561 | 0.8354 | 0.8917 | 0.9853 | 0.8765 | 0.9293 | 0.6625 | 0.6469 | 0.6115 | 0.6992 | 0.8035 | 0.9258 | 0.6473 | 0.9504 | 0.8072 | 0.6330 | 0.9520 | 0.8479 | 0.9057 | 0.7689 | 0.6735 | 0.7737 |
0.6937 | 18.8172 | 3500 | 0.8023 | 0.7949 | 0.8793 | 0.9636 | 0.9916 | 0.9381 | 0.9636 | 0.7394 | 0.7354 | 0.7518 | 0.8733 | 0.9042 | 0.9642 | 0.7494 | 0.9831 | 0.9147 | 0.7860 | 0.9800 | 0.8926 | 0.9595 | 0.8541 | 0.8311 | 0.8939 | 0.9854 | 0.8770 | 0.9293 | 0.6726 | 0.6458 | 0.6119 | 0.6998 | 0.8048 | 0.9260 | 0.6485 | 0.9500 | 0.8073 | 0.6269 | 0.9521 | 0.8494 | 0.9042 | 0.7645 | 0.6728 | 0.7739 |
0.7394 | 19.3548 | 3600 | 0.8042 | 0.7947 | 0.8784 | 0.9635 | 0.9914 | 0.9395 | 0.9634 | 0.7360 | 0.7353 | 0.7553 | 0.8686 | 0.8979 | 0.9643 | 0.7476 | 0.9831 | 0.9135 | 0.7847 | 0.9800 | 0.8929 | 0.9589 | 0.8539 | 0.8324 | 0.8906 | 0.9853 | 0.8768 | 0.9290 | 0.6710 | 0.6472 | 0.6118 | 0.7025 | 0.8008 | 0.9258 | 0.6498 | 0.9500 | 0.8076 | 0.6266 | 0.9520 | 0.8499 | 0.9052 | 0.7664 | 0.6679 | 0.7742 |
0.7267 | 19.8925 | 3700 | 0.8010 | 0.7954 | 0.8798 | 0.9636 | 0.9913 | 0.9403 | 0.9629 | 0.7410 | 0.7431 | 0.7549 | 0.8752 | 0.9026 | 0.9649 | 0.7458 | 0.9823 | 0.9127 | 0.7910 | 0.9800 | 0.8932 | 0.9593 | 0.8554 | 0.8280 | 0.8927 | 0.9853 | 0.8769 | 0.9294 | 0.6725 | 0.6481 | 0.6122 | 0.7011 | 0.8023 | 0.9259 | 0.6490 | 0.9504 | 0.8085 | 0.6295 | 0.9521 | 0.8505 | 0.9051 | 0.7672 | 0.6727 | 0.7743 |
Framework versions
- Transformers 4.48.3
- Pytorch 2.1.2+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 5
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.