SegFormer_b5_11

This model is a fine-tuned version of nvidia/segformer-b5-finetuned-cityscapes-1024-1024 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8010
  • Mean Iou: 0.7954
  • Mean Accuracy: 0.8798
  • Overall Accuracy: 0.9636
  • Accuracy Road: 0.9913
  • Accuracy Sidewalk: 0.9403
  • Accuracy Building: 0.9629
  • Accuracy Wall: 0.7410
  • Accuracy Fence: 0.7431
  • Accuracy Pole: 0.7549
  • Accuracy Traffic light: 0.8752
  • Accuracy Traffic sign: 0.9026
  • Accuracy Vegetation: 0.9649
  • Accuracy Terrain: 0.7458
  • Accuracy Sky: 0.9823
  • Accuracy Person: 0.9127
  • Accuracy Rider: 0.7910
  • Accuracy Car: 0.9800
  • Accuracy Truck: 0.8932
  • Accuracy Bus: 0.9593
  • Accuracy Train: 0.8554
  • Accuracy Motorcycle: 0.8280
  • Accuracy Bicycle: 0.8927
  • Iou Road: 0.9853
  • Iou Sidewalk: 0.8769
  • Iou Building: 0.9294
  • Iou Wall: 0.6725
  • Iou Fence: 0.6481
  • Iou Pole: 0.6122
  • Iou Traffic light: 0.7011
  • Iou Traffic sign: 0.8023
  • Iou Vegetation: 0.9259
  • Iou Terrain: 0.6490
  • Iou Sky: 0.9504
  • Iou Person: 0.8085
  • Iou Rider: 0.6295
  • Iou Car: 0.9521
  • Iou Truck: 0.8505
  • Iou Bus: 0.9051
  • Iou Train: 0.7672
  • Iou Motorcycle: 0.6727
  • Iou Bicycle: 0.7743

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 9e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Accuracy Bicycle Accuracy Building Accuracy Bus Accuracy Car Accuracy Fence Accuracy Motorcycle Accuracy Person Accuracy Pole Accuracy Rider Accuracy Road Accuracy Sidewalk Accuracy Sky Accuracy Terrain Accuracy Traffic light Accuracy Traffic sign Accuracy Train Accuracy Truck Accuracy Vegetation Accuracy Wall Iou Bicycle Iou Building Iou Bus Iou Car Iou Fence Iou Motorcycle Iou Person Iou Pole Iou Rider Iou Road Iou Sidewalk Iou Sky Iou Terrain Iou Traffic light Iou Traffic sign Iou Train Iou Truck Iou Vegetation Iou Wall Validation Loss Mean Accuracy Mean Iou Overall Accuracy
0.8456 0.5376 100 0.8747 0.9607 0.9437 0.9775 0.7085 0.7599 0.9048 0.7455 0.7610 0.9906 0.9288 0.9840 0.7789 0.8427 0.8786 0.8887 0.9006 0.9608 0.6635 0.7535 0.9230 0.8894 0.9483 0.5970 0.6374 0.7836 0.5859 0.5740 0.9834 0.8684 0.9456 0.6764 0.6691 0.7648 0.7901 0.8296 0.9231 0.5864 0.8201 0.8660 0.7752 0.9602
0.7465 1.0753 200 0.8953 0.9613 0.9506 0.9774 0.7230 0.8236 0.9016 0.7375 0.7563 0.9918 0.9356 0.9811 0.7888 0.8609 0.8764 0.8912 0.8998 0.9618 0.6790 0.7569 0.9234 0.8931 0.9516 0.6045 0.6414 0.7954 0.5904 0.5894 0.9854 0.8754 0.9497 0.6775 0.6721 0.7699 0.7690 0.8615 0.9251 0.5979 0.8066 0.8733 0.7805 0.9615
0.8764 1.6129 300 0.9008 0.9612 0.9433 0.9793 0.7547 0.8097 0.9005 0.7511 0.7752 0.9903 0.9396 0.9839 0.7864 0.8408 0.8819 0.9089 0.9136 0.9622 0.6706 0.7598 0.9246 0.8930 0.9510 0.6305 0.6610 0.7979 0.5977 0.6033 0.9851 0.8752 0.9470 0.6769 0.6801 0.7820 0.7666 0.8635 0.9255 0.6064 0.8097 0.8765 0.7856 0.9620
0.7359 2.1505 400 0.8901 0.9607 0.9386 0.9761 0.7167 0.8253 0.9077 0.7430 0.7825 0.9905 0.9391 0.9838 0.7778 0.8542 0.8748 0.8920 0.9048 0.9661 0.6947 0.7636 0.9245 0.8868 0.9512 0.6363 0.6503 0.7985 0.6001 0.6098 0.9845 0.8719 0.9484 0.6744 0.6749 0.7769 0.7577 0.8573 0.9253 0.6225 0.8090 0.8747 0.7850 0.9620
0.7919 2.6882 500 0.9014 0.9609 0.9466 0.9799 0.7401 0.8459 0.9047 0.7518 0.7771 0.9908 0.9401 0.9845 0.7713 0.8783 0.8932 0.8925 0.8930 0.9611 0.7098 0.7544 0.9257 0.8922 0.9507 0.6480 0.6348 0.8013 0.6025 0.6135 0.9848 0.8734 0.9477 0.6692 0.6717 0.7750 0.7866 0.8403 0.9260 0.6263 0.8023 0.8802 0.7855 0.9622
0.7191 3.2258 600 0.8953 0.9579 0.9395 0.9787 0.7650 0.8355 0.9048 0.7311 0.7800 0.9899 0.9404 0.9851 0.7621 0.8686 0.8920 0.8988 0.8892 0.9679 0.6577 0.7628 0.9246 0.8904 0.9507 0.6388 0.6582 0.7989 0.6031 0.6143 0.9843 0.8700 0.9461 0.6666 0.6777 0.7833 0.7473 0.8522 0.9246 0.5967 0.8065 0.8758 0.7837 0.9617
0.7745 3.7634 700 0.8943 0.9637 0.9493 0.9785 0.7420 0.8280 0.9097 0.7325 0.8065 0.9904 0.9360 0.9842 0.7625 0.8534 0.8953 0.8598 0.9001 0.9622 0.7256 0.7607 0.9268 0.8841 0.9506 0.6273 0.6433 0.7975 0.6022 0.6199 0.9847 0.8724 0.9478 0.6619 0.6930 0.7912 0.7575 0.8396 0.9258 0.6443 0.8021 0.8776 0.7858 0.9623
0.7367 4.3011 800 0.9093 0.9618 0.9449 0.9781 0.7500 0.8337 0.9044 0.7514 0.7928 0.9901 0.9353 0.9827 0.7850 0.8725 0.8896 0.8837 0.8948 0.9617 0.7004 0.7460 0.9268 0.8929 0.9504 0.6400 0.6321 0.8002 0.6050 0.6170 0.9840 0.8686 0.9485 0.6595 0.6862 0.7912 0.7854 0.8475 0.9246 0.6433 0.7997 0.8801 0.7868 0.9619
0.7503 4.8387 900 0.8817 0.9648 0.9511 0.9766 0.7600 0.8513 0.9242 0.7315 0.7496 0.9902 0.9400 0.9846 0.7469 0.8654 0.8977 0.8548 0.8720 0.9612 0.7353 0.7647 0.9296 0.8866 0.9496 0.6262 0.6102 0.7943 0.6053 0.6080 0.9846 0.8724 0.9470 0.6628 0.6888 0.7974 0.7076 0.8258 0.9255 0.6435 0.7955 0.8757 0.7805 0.9625
0.6957 5.3763 1000 0.8892 0.9658 0.9637 0.9769 0.7331 0.8256 0.9122 0.7369 0.7667 0.9905 0.9398 0.9807 0.7519 0.8553 0.8957 0.8498 0.8989 0.9613 0.7224 0.7631 0.9276 0.8939 0.9507 0.6321 0.6350 0.7996 0.6024 0.6125 0.9845 0.8712 0.9512 0.6634 0.6916 0.7959 0.6943 0.8423 0.9257 0.6415 0.7978 0.8746 0.7831 0.9625
0.7057 5.9140 1100 0.8826 0.9633 0.9504 0.9792 0.7497 0.7977 0.9110 0.7324 0.8061 0.9915 0.9366 0.9827 0.7486 0.8732 0.8910 0.8817 0.8972 0.9635 0.7321 0.7690 0.9281 0.8900 0.9509 0.6408 0.6762 0.8004 0.6055 0.6196 0.9849 0.8746 0.9519 0.6451 0.6913 0.7928 0.7596 0.8476 0.9252 0.6504 0.7907 0.8774 0.7897 0.9628
0.7232 6.4516 1200 0.9046 0.9633 0.9497 0.9790 0.7542 0.8296 0.9038 0.7324 0.7938 0.9907 0.9399 0.9861 0.7605 0.8725 0.9006 0.8611 0.8941 0.9620 0.7467 0.7650 0.9290 0.8919 0.9512 0.6442 0.6748 0.8036 0.6041 0.6233 0.9850 0.8746 0.9474 0.6523 0.6870 0.7915 0.7657 0.8481 0.9249 0.6596 0.7927 0.8802 0.7907 0.9629
0.7168 6.9892 1300 0.8830 0.9650 0.9548 0.9790 0.7742 0.8130 0.9006 0.7287 0.8121 0.9913 0.9380 0.9831 0.7694 0.8789 0.8839 0.8345 0.9056 0.9628 0.7568 0.7677 0.9305 0.8870 0.9509 0.6559 0.6532 0.8054 0.6054 0.6168 0.9851 0.8745 0.9513 0.6673 0.6920 0.7904 0.7415 0.8340 0.9259 0.6668 0.7881 0.8797 0.7896 0.9634
0.8144 7.5269 1400 0.8928 0.9669 0.9577 0.9762 0.7470 0.8043 0.9186 0.7260 0.7572 0.9909 0.9455 0.9835 0.7529 0.8334 0.8796 0.8693 0.9011 0.9599 0.7138 0.7656 0.9277 0.8981 0.9519 0.6414 0.6424 0.8027 0.6054 0.6195 0.9852 0.8744 0.9491 0.6484 0.6973 0.7954 0.7597 0.8504 0.9256 0.6275 0.7988 0.8724 0.7878 0.9628
0.674 8.0645 1500 0.8897 0.9579 0.9578 0.9795 0.7540 0.8216 0.9106 0.7614 0.8117 0.9894 0.9419 0.9789 0.7606 0.8837 0.9095 0.8278 0.9047 0.9660 0.7330 0.7675 0.9271 0.8821 0.9497 0.6487 0.6595 0.8033 0.6039 0.6307 0.9845 0.8710 0.9505 0.6458 0.6866 0.7881 0.7477 0.8369 0.9245 0.6700 0.7934 0.8810 0.7883 0.9623
0.7338 8.6022 1600 0.9060 0.9592 0.9399 0.9803 0.7338 0.8360 0.9070 0.7568 0.7956 0.9905 0.9415 0.9804 0.7382 0.8807 0.9113 0.8447 0.8667 0.9657 0.7684 0.7642 0.9283 0.8809 0.9501 0.6497 0.6348 0.8044 0.6017 0.6277 0.9852 0.8749 0.9497 0.6511 0.6893 0.7935 0.7579 0.8287 0.9252 0.6553 0.8012 0.8791 0.7870 0.9627
0.732 9.1398 1700 0.9015 0.9619 0.9567 0.9780 0.7595 0.7503 0.9102 0.7426 0.8075 0.9915 0.9402 0.9811 0.7447 0.8711 0.8977 0.8600 0.8946 0.9651 0.7170 0.7647 0.9284 0.8980 0.9522 0.6496 0.6533 0.8081 0.6072 0.6366 0.9856 0.8772 0.9515 0.6495 0.6977 0.7988 0.7542 0.8434 0.9246 0.6266 0.7934 0.8753 0.7899 0.9631
0.7185 9.6774 1800 0.8829 0.9621 0.9505 0.9795 0.7833 0.8020 0.9157 0.7461 0.7981 0.9909 0.9382 0.9832 0.7786 0.8596 0.8963 0.8676 0.8832 0.9603 0.7716 0.7691 0.9299 0.8980 0.9516 0.6466 0.6670 0.8060 0.6063 0.6225 0.9849 0.8739 0.9499 0.6512 0.6990 0.7985 0.7668 0.8446 0.9247 0.6516 0.7952 0.8816 0.7917 0.9629
0.7091 10.2151 1900 0.8912 0.9648 0.9520 0.9794 0.7253 0.8268 0.9211 0.7488 0.7938 0.9911 0.9429 0.9824 0.7679 0.8810 0.8992 0.8435 0.8940 0.9610 0.7557 0.7716 0.9294 0.8991 0.9525 0.6459 0.6698 0.8056 0.6074 0.6445 0.9854 0.8761 0.9509 0.6601 0.6914 0.7984 0.7805 0.8535 0.9260 0.6588 0.7921 0.8801 0.7951 0.9635
0.6826 10.7527 2000 0.8785 0.9637 0.9457 0.9801 0.6996 0.8356 0.9104 0.7530 0.8009 0.9906 0.9428 0.9805 0.7494 0.8558 0.8981 0.8121 0.8620 0.9660 0.7376 0.7694 0.9284 0.8812 0.9508 0.6287 0.6513 0.8094 0.6060 0.6381 0.9849 0.8741 0.9528 0.6593 0.7036 0.7983 0.7298 0.8311 0.9256 0.6666 0.7996 0.8717 0.7889 0.9631
0.7622 11.2903 2100 0.8916 0.9630 0.9596 0.9799 0.7587 0.7991 0.9095 0.7388 0.8078 0.9907 0.9427 0.9823 0.7546 0.8863 0.8897 0.8390 0.8936 0.9643 0.7664 0.7684 0.9306 0.8943 0.9520 0.6393 0.6828 0.8097 0.6067 0.6298 0.9851 0.8743 0.9516 0.6589 0.6909 0.7975 0.7664 0.8493 0.9261 0.6653 0.7964 0.8799 0.7936 0.9634
0.7119 11.8280 2200 0.8803 0.9621 0.9525 0.9806 0.7773 0.7930 0.9044 0.7455 0.8255 0.9906 0.9395 0.9807 0.7635 0.8761 0.8934 0.8577 0.8865 0.9642 0.7259 0.7688 0.9300 0.8945 0.9511 0.6536 0.6718 0.8069 0.6057 0.6263 0.9848 0.8726 0.9509 0.6453 0.6942 0.7977 0.7797 0.8432 0.9247 0.6438 0.7983 0.8789 0.7919 0.9629
0.7236 12.3656 2300 0.8938 0.9609 0.9551 0.9794 0.7626 0.8259 0.9156 0.7575 0.7791 0.9907 0.9408 0.9813 0.7429 0.8790 0.9012 0.8580 0.8974 0.9643 0.7481 0.7711 0.9289 0.8987 0.9510 0.6524 0.6577 0.8062 0.6050 0.6293 0.9848 0.8727 0.9500 0.6531 0.6968 0.8004 0.7965 0.8465 0.9252 0.6718 0.7972 0.8807 0.7946 0.9631
0.745 12.9032 2400 0.8928 0.9615 0.9572 0.9790 0.7629 0.8120 0.9063 0.7594 0.8244 0.9913 0.9409 0.9826 0.7544 0.8728 0.8969 0.8665 0.8985 0.9648 0.7048 0.7716 0.9300 0.8993 0.9510 0.6337 0.6622 0.8115 0.6105 0.6402 0.9854 0.8765 0.9505 0.6522 0.7016 0.7979 0.7610 0.8434 0.9258 0.6376 0.7979 0.8805 0.7917 0.9633
0.7197 13.4409 2500 0.8929 0.9647 0.9573 0.9787 0.7667 0.8368 0.9116 0.7487 0.8204 0.9919 0.9397 0.9835 0.7415 0.8728 0.8990 0.8259 0.8953 0.9609 0.7300 0.7751 0.9307 0.8883 0.9520 0.6490 0.6705 0.8093 0.6107 0.6402 0.9853 0.8744 0.9496 0.6444 0.6988 0.8019 0.7652 0.8506 0.9256 0.6509 0.7964 0.8799 0.7933 0.9635
0.6799 13.9785 2600 0.8919 0.9614 0.9597 0.9801 0.7438 0.8240 0.9139 0.7602 0.8042 0.9915 0.9367 0.9835 0.7437 0.8714 0.8954 0.8393 0.8935 0.9642 0.7542 0.7718 0.9294 0.8916 0.9516 0.6441 0.6707 0.8078 0.6099 0.6347 0.9848 0.8734 0.9496 0.6567 0.6986 0.7943 0.7562 0.8487 0.9260 0.6703 0.7988 0.8796 0.7932 0.9632
0.7878 14.5161 2700 0.8927 0.9620 0.9583 0.9793 0.7536 0.8011 0.9151 0.7567 0.7931 0.9914 0.9375 0.9821 0.7587 0.8762 0.8942 0.8430 0.8929 0.9650 0.7350 0.7745 0.9292 0.8971 0.9516 0.6475 0.6774 0.8057 0.6080 0.6251 0.9852 0.8776 0.9497 0.6536 0.6989 0.8010 0.7671 0.8465 0.9258 0.6661 0.7984 0.8783 0.7941 0.9634
0.7148 15.0538 2800 0.8931 0.9628 0.9587 0.9797 0.7453 0.8243 0.9091 0.7500 0.7917 0.9916 0.9399 0.9812 0.7571 0.8768 0.8993 0.8510 0.8947 0.9654 0.7297 0.7730 0.9296 0.9011 0.9522 0.6505 0.6674 0.8061 0.6091 0.6236 0.9853 0.8778 0.9504 0.6558 0.7039 0.7955 0.7517 0.8510 0.9259 0.6642 0.7981 0.8790 0.7934 0.9636
0.7285 15.5914 2900 0.8943 0.9606 0.9532 0.9801 0.7467 0.8390 0.9101 0.7498 0.7744 0.9914 0.9405 0.9805 0.7476 0.8748 0.8958 0.8665 0.8940 0.9672 0.7377 0.7741 0.9296 0.9035 0.9517 0.6470 0.6514 0.8072 0.6080 0.6198 0.9852 0.8764 0.9519 0.6497 0.7023 0.7972 0.7651 0.8472 0.9251 0.6624 0.7999 0.8792 0.7924 0.9634
0.7323 16.1290 3000 0.8910 0.9625 0.9586 0.9793 0.7261 0.8325 0.9114 0.7610 0.7587 0.9920 0.9380 0.9820 0.7519 0.8684 0.8963 0.8765 0.8963 0.9653 0.7514 0.7733 0.9293 0.9072 0.9525 0.6437 0.6599 0.8056 0.6113 0.6173 0.9856 0.8784 0.9510 0.6500 0.7041 0.8001 0.7632 0.8499 0.9257 0.6764 0.8014 0.8789 0.7939 0.9636
0.7061 16.6667 3100 0.8921 0.9628 0.9597 0.9798 0.7371 0.8213 0.9142 0.7492 0.7705 0.9918 0.9378 0.9825 0.7506 0.8748 0.8998 0.8767 0.8934 0.9655 0.7478 0.7745 0.9296 0.9068 0.9519 0.6456 0.6716 0.8063 0.6108 0.6240 0.9854 0.8777 0.9500 0.6536 0.6998 0.8011 0.7769 0.8482 0.9259 0.6744 0.7985 0.8793 0.7955 0.9637
0.6841 17.2043 3200 0.8868 0.9633 0.9550 0.9794 0.7299 0.8301 0.9135 0.7500 0.7975 0.9912 0.9429 0.9835 0.7561 0.8647 0.9024 0.8522 0.8900 0.9640 0.7625 0.7730 0.9300 0.9052 0.9521 0.6484 0.6691 0.8070 0.6104 0.6292 0.9854 0.8775 0.9497 0.6519 0.7022 0.8053 0.7726 0.8495 0.9257 0.6717 0.8015 0.8797 0.7956 0.9637
0.6523 17.7419 3300 0.8919 0.9617 0.9595 0.9802 0.7629 0.8459 0.9139 0.7584 0.7935 0.9921 0.9339 0.9828 0.7501 0.8744 0.8993 0.8529 0.8921 0.9652 0.7499 0.7733 0.9304 0.9021 0.9519 0.6569 0.6581 0.8088 0.6126 0.6330 0.9853 0.8772 0.9501 0.6491 0.7004 0.8028 0.7517 0.8487 0.9258 0.6701 0.7975 0.8821 0.7941 0.9637
0.723 18.2796 3400 0.8018 0.7947 0.8804 0.9635 0.9910 0.9418 0.9621 0.7371 0.7366 0.7561 0.8741 0.9049 0.9654 0.7434 0.9822 0.9172 0.7981 0.9795 0.8968 0.9583 0.8561 0.8354 0.8917 0.9853 0.8765 0.9293 0.6625 0.6469 0.6115 0.6992 0.8035 0.9258 0.6473 0.9504 0.8072 0.6330 0.9520 0.8479 0.9057 0.7689 0.6735 0.7737
0.6937 18.8172 3500 0.8023 0.7949 0.8793 0.9636 0.9916 0.9381 0.9636 0.7394 0.7354 0.7518 0.8733 0.9042 0.9642 0.7494 0.9831 0.9147 0.7860 0.9800 0.8926 0.9595 0.8541 0.8311 0.8939 0.9854 0.8770 0.9293 0.6726 0.6458 0.6119 0.6998 0.8048 0.9260 0.6485 0.9500 0.8073 0.6269 0.9521 0.8494 0.9042 0.7645 0.6728 0.7739
0.7394 19.3548 3600 0.8042 0.7947 0.8784 0.9635 0.9914 0.9395 0.9634 0.7360 0.7353 0.7553 0.8686 0.8979 0.9643 0.7476 0.9831 0.9135 0.7847 0.9800 0.8929 0.9589 0.8539 0.8324 0.8906 0.9853 0.8768 0.9290 0.6710 0.6472 0.6118 0.7025 0.8008 0.9258 0.6498 0.9500 0.8076 0.6266 0.9520 0.8499 0.9052 0.7664 0.6679 0.7742
0.7267 19.8925 3700 0.8010 0.7954 0.8798 0.9636 0.9913 0.9403 0.9629 0.7410 0.7431 0.7549 0.8752 0.9026 0.9649 0.7458 0.9823 0.9127 0.7910 0.9800 0.8932 0.9593 0.8554 0.8280 0.8927 0.9853 0.8769 0.9294 0.6725 0.6481 0.6122 0.7011 0.8023 0.9259 0.6490 0.9504 0.8085 0.6295 0.9521 0.8505 0.9051 0.7672 0.6727 0.7743

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.1.2+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
5
Safetensors
Model size
84.6M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for Vrjb/SegFormer_b5_11

Finetuned
(5)
this model