SegFormer_b2_10

This model is a fine-tuned version of nvidia/segformer-b2-finetuned-cityscapes-1024-1024 on an unknown dataset. It achieves the following results on the evaluation set:

  • epoch: 14.5161
  • eval_accuracy_bicycle: 0.8914
  • eval_accuracy_building: 0.9612
  • eval_accuracy_bus: 0.9483
  • eval_accuracy_car: 0.9763
  • eval_accuracy_fence: 0.7181
  • eval_accuracy_motorcycle: 0.7986
  • eval_accuracy_person: 0.9057
  • eval_accuracy_pole: 0.7198
  • eval_accuracy_rider: 0.7552
  • eval_accuracy_road: 0.9902
  • eval_accuracy_sidewalk: 0.9345
  • eval_accuracy_sky: 0.9831
  • eval_accuracy_terrain: 0.7525
  • eval_accuracy_traffic light: 0.8652
  • eval_accuracy_traffic sign: 0.8838
  • eval_accuracy_train: 0.8680
  • eval_accuracy_truck: 0.8765
  • eval_accuracy_vegetation: 0.9637
  • eval_accuracy_wall: 0.7237
  • eval_iou_bicycle: 0.7541
  • eval_iou_building: 0.9244
  • eval_iou_bus: 0.8603
  • eval_iou_car: 0.9482
  • eval_iou_fence: 0.6075
  • eval_iou_motorcycle: 0.6289
  • eval_iou_person: 0.7921
  • eval_iou_pole: 0.5893
  • eval_iou_rider: 0.5955
  • eval_iou_road: 0.9835
  • eval_iou_sidewalk: 0.8649
  • eval_iou_sky: 0.9465
  • eval_iou_terrain: 0.6534
  • eval_iou_traffic light: 0.6718
  • eval_iou_traffic sign: 0.7801
  • eval_iou_train: 0.8124
  • eval_iou_truck: 0.8174
  • eval_iou_vegetation: 0.9245
  • eval_iou_wall: 0.6499
  • eval_loss: 0.8030
  • eval_mean_accuracy: 0.8693
  • eval_mean_iou: 0.7792
  • eval_overall_accuracy: 0.9609
  • eval_runtime: 202.8122
  • eval_samples_per_second: 2.465
  • eval_steps_per_second: 0.616
  • step: 2700

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Framework versions

  • Transformers 4.48.1
  • Pytorch 2.1.2+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
7
Safetensors
Model size
27.4M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model’s pipeline type.

Model tree for Vrjb/SegFormer_b2_10

Finetuned
(6)
this model