Edit model card

DNADebertaSentencepiece30k_continuation

This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 6.0813

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
6.4099 0.41 5000 6.3686
6.4014 0.81 10000 6.3544
6.3816 1.22 15000 6.3338
6.3652 1.62 20000 6.3161
6.3477 2.03 25000 6.2981
6.3305 2.44 30000 6.2851
6.3173 2.84 35000 6.2725
6.306 3.25 40000 6.2559
6.2903 3.66 45000 6.2447
6.2806 4.06 50000 6.2342
6.2654 4.47 55000 6.2213
6.2592 4.87 60000 6.2101
6.2481 5.28 65000 6.2023
6.2394 5.69 70000 6.1929
6.2295 6.09 75000 6.1833
6.219 6.5 80000 6.1800
6.2143 6.91 85000 6.1698
6.2031 7.31 90000 6.1629
6.2036 7.72 95000 6.1523
6.1923 8.12 100000 6.1522
6.1868 8.53 105000 6.1426
6.1827 8.94 110000 6.1356
6.1767 9.34 115000 6.1322
6.1717 9.75 120000 6.1255
6.1649 10.16 125000 6.1221
6.1591 10.56 130000 6.1176
6.1562 10.97 135000 6.1111
6.15 11.37 140000 6.1063
6.1488 11.78 145000 6.1046
6.1449 12.19 150000 6.1023
6.1397 12.59 155000 6.0961
6.135 13.0 160000 6.0938
6.1315 13.41 165000 6.0891
6.1302 13.81 170000 6.0853
6.1295 14.22 175000 6.0838
6.1276 14.62 180000 6.0834

Framework versions

  • Transformers 4.19.2
  • Pytorch 1.11.0
  • Datasets 2.2.2
  • Tokenizers 0.12.1
Downloads last month
6
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.