File size: 4,761 Bytes
3511928 ffb4982 3511928 f5b15b8 ffb4982 3511928 8bf721c dcbd7ca 1a8d750 1a7f1ae dcbd7ca 496fe8c dcbd7ca 826333a dcbd7ca 824d373 dcbd7ca 826333a dcbd7ca ffb4982 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
---
license: apache-2.0
library_name: transformers
datasets:
- argilla/distilabel-intel-orca-dpo-pairs
pipeline_tag: text-generation
model-index:
- name: Evangelion-7B
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 68.94
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=VitalContribution/Evangelion-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 86.45
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=VitalContribution/Evangelion-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 63.97
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=VitalContribution/Evangelion-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 64.01
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=VitalContribution/Evangelion-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 79.95
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=VitalContribution/Evangelion-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 66.94
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=VitalContribution/Evangelion-7B
name: Open LLM Leaderboard
---
<h1 align="center">🏠 Socials</h1>
<p align="center">
🤗 <a href="https://huggingface.co/VitalContribution" target="_blank">HF Repo</a> • 🐦 <a href="https://twitter.com/VContribution" target="_blank">Twitter</a>
</p>
# Evangelion-7B
<img src="https://cdn-uploads.huggingface.co/production/uploads/63ae02ff20176b2d21669dd6/-si1T5gSSjvg1QlfeFKDf.jpeg" width="500" height="600">
I was just curious to see if something special might happen if one uses:
$$
\text{{high-quality DPO dataset}} + \text{{merge of DPO optimized and non-DPO optimized model}}
$$
The underlying model that I used was `/Weyaxi/OpenHermes-2.5-neural-chat-v3-3-Slerp`.
# Dataset
Dataset: `/argilla/distilabel-intel-orca-dpo-pairs`
The dataset was roughly ~3000 samples but they were high quality (according to the chosen_score).
The following filters were applied to the original dataset:
```python
dataset = dataset.filter(
lambda r:
r["status"] != "tie" and
r["chosen_score"] >= 8 and
not r["in_gsm8k_train"]
)
```
# Chat Template
I decided to go with the ChatML which is used for OpenHermes2.5
By the way I integreated the chat template into the models tokenizer.
```
<|im_start|>system
{system}<|im_end|>
<|im_start|>user
{user}<|im_end|>
<|im_start|>assistant
{asistant}<|im_end|>
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_VitalContribution__Evangelion-7B)
| Metric |Value|
|---------------------------------|----:|
|Avg. |71.71|
|AI2 Reasoning Challenge (25-Shot)|68.94|
|HellaSwag (10-Shot) |86.45|
|MMLU (5-Shot) |63.97|
|TruthfulQA (0-shot) |64.01|
|Winogrande (5-shot) |79.95|
|GSM8k (5-shot) |66.94|
|