File size: 11,342 Bytes
8a46ae3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 |
"""
Fine-Tune SantaCoder on code/text dataset
"""
# copied from https://github.com/loubnabnl/santacoder-finetuning
# removed all parts related to FIM
# set --subset to default to None instead of "data" to avoid issues with my own datasets.
# added --resume_from_checkpoint to resume training from a checkpoint (untested)
import argparse
import os
import random
import sys
import numpy as np
import torch
from datasets import load_dataset
from torch.utils.data import IterableDataset
from torch.utils.data.dataloader import DataLoader
from tqdm import tqdm
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
Trainer,
TrainingArguments,
logging,
set_seed,
)
# import fim
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--resume_from_checkpoint", type=str, default=None) #can pass a checkpoint dir to resume training
parser.add_argument("--model_path", type=str, default="bigcode/santacoder")
parser.add_argument("--dataset_name", type=str, default="bigcode/the-stack-dedup")
parser.add_argument("--subset", type=str, default=None) #None a bodge but not the solution
parser.add_argument("--split", type=str, default="train")
parser.add_argument("--size_valid_set", type=int, default=4000)
parser.add_argument("--streaming", action="store_true")
parser.add_argument("--shuffle_buffer", type=int, default=5000)
parser.add_argument("--data_column", type=str, default="content")
parser.add_argument("--seq_length", type=int, default=1024)
parser.add_argument("--max_steps", type=int, default=10000)
parser.add_argument("--batch_size", type=int, default=2)
parser.add_argument("--gradient_accumulation_steps", type=int, default=8)
parser.add_argument("--eos_token_id", type=int, default=49152)
parser.add_argument("--learning_rate", type=float, default=5e-5)
parser.add_argument("--lr_scheduler_type", type=str, default="cosine")
parser.add_argument("--num_warmup_steps", type=int, default=100)
parser.add_argument("--weight_decay", type=float, default=0.05)
parser.add_argument("--local_rank", type=int, default=0)
parser.add_argument("--no_fp16", action="store_false")
parser.add_argument("--bf16", action="store_true")
parser.add_argument("--no_gradient_checkpointing", action="store_false")
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--num_workers", type=int, default=None)
parser.add_argument("--output_dir", type=str, default="./checkpoints")
parser.add_argument("--log_freq", default=1, type=int)
parser.add_argument("--eval_freq", default=1000, type=int)
parser.add_argument("--save_freq", default=1000, type=int)
# parser.add_argument("--fim_rate", type=float, default=0)
# parser.add_argument("--fim_spm_rate", type=float, default=0)
return parser.parse_args()
def chars_token_ratio(dataset, tokenizer, data_column, nb_examples=400):
"""
Estimate the average number of characters per token in the dataset.
"""
total_characters, total_tokens = 0, 0
for _, example in tqdm(zip(range(nb_examples), iter(dataset)), total=nb_examples):
total_characters += len(example[data_column])
total_tokens += len(tokenizer(example[data_column]).tokens())
return total_characters / total_tokens
class ConstantLengthDataset(IterableDataset):
"""
Iterable dataset that returns constant length chunks of tokens from stream of text files.
Args:
tokenizer (Tokenizer): The processor used for proccessing the data.
dataset (dataset.Dataset): Dataset with text files.
infinite (bool): If True the iterator is reset after dataset reaches end else stops.
seq_length (int): Length of token sequences to return.
num_of_sequences (int): Number of token sequences to keep in buffer.
chars_per_token (int): Number of characters per token used to estimate number of tokens in text buffer.
# fim_rate (float): Rate (0.0 to 1.0) that sample will be permuted with FIM.
# fim_spm_rate (float): Rate (0.0 to 1.0) of FIM permuations that will use SPM.
seed (int): Seed for random number generator.
"""
def __init__(
self,
tokenizer,
dataset,
infinite=False,
seq_length=1024,
num_of_sequences=1024,
chars_per_token=3.6,
content_field="content",
# fim_rate=0.5,
# fim_spm_rate=0.5,
seed=0,
):
self.tokenizer = tokenizer
self.concat_token_id = (
tokenizer.eos_token_id if tokenizer.eos_token_id else args.eos_token_id
)
self.dataset = dataset
self.seq_length = seq_length
self.infinite = infinite
self.current_size = 0
self.max_buffer_size = seq_length * chars_per_token * num_of_sequences
self.content_field = content_field
# self.fim_rate = fim_rate
# self.fim_spm_rate = fim_spm_rate
self.seed = seed
# (
# self.suffix_tok_id,
# self.prefix_tok_id,
# self.middle_tok_id,
# self.pad_tok_id,
# ) = fim.get_fim_token_ids(self.tokenizer)
# if not self.suffix_tok_id and self.fim_rate > 0:
# print("FIM is not supported by tokenizer, disabling FIM")
# self.fim_rate = 0
def __iter__(self):
iterator = iter(self.dataset)
more_examples = True
while more_examples:
buffer, buffer_len = [], 0
while True:
if buffer_len >= self.max_buffer_size:
break
try:
buffer.append(next(iterator)[self.content_field])
buffer_len += len(buffer[-1])
except StopIteration:
if self.infinite:
iterator = iter(self.dataset)
else:
more_examples = False
break
tokenized_inputs = self.tokenizer(buffer, truncation=False)["input_ids"]
all_token_ids = []
np_rng = np.random.RandomState(seed=self.seed)
for tokenized_input in tokenized_inputs:
# optionally do FIM permutations
# if self.fim_rate > 0:
# tokenized_input, np_rng = fim.permute(
# tokenized_input,
# np_rng,
# self.suffix_tok_id,
# self.prefix_tok_id,
# self.middle_tok_id,
# self.pad_tok_id,
# fim_rate=self.fim_rate,
# fim_spm_rate=self.fim_spm_rate,
# truncate_or_pad=False,
# )
all_token_ids.extend(tokenized_input + [self.concat_token_id])
examples = []
for i in range(0, len(all_token_ids), self.seq_length):
input_ids = all_token_ids[i : i + self.seq_length]
if len(input_ids) == self.seq_length:
examples.append(input_ids)
random.shuffle(examples)
for example in examples:
self.current_size += 1
yield {
"input_ids": torch.LongTensor(example),
"labels": torch.LongTensor(example),
}
def create_datasets(tokenizer, args):
dataset = load_dataset(
args.dataset_name,
data_dir=args.subset,
split=args.split,
use_auth_token=True,
num_proc=args.num_workers if not args.streaming else None,
streaming=args.streaming,
)
if args.streaming:
print("Loading the dataset in streaming mode")
valid_data = dataset.take(args.size_valid_set)
train_data = dataset.skip(args.size_valid_set)
train_data = train_data.shuffle(buffer_size=args.shuffle_buffer, seed=args.seed)
else:
dataset = dataset.train_test_split(test_size=0.005, seed=args.seed)
train_data = dataset["train"]
valid_data = dataset["test"]
print(
f"Size of the train set: {len(train_data)}. Size of the validation set: {len(valid_data)}"
)
chars_per_token = chars_token_ratio(train_data, tokenizer, args.data_column)
print(f"The character to token ratio of the dataset is: {chars_per_token:.2f}")
train_dataset = ConstantLengthDataset(
tokenizer,
train_data,
infinite=True,
seq_length=args.seq_length,
chars_per_token=chars_per_token,
content_field=args.data_column,
# fim_rate=args.fim_rate,
# fim_spm_rate=args.fim_spm_rate,
seed=args.seed,
)
valid_dataset = ConstantLengthDataset(
tokenizer,
valid_data,
infinite=False,
seq_length=args.seq_length,
chars_per_token=chars_per_token,
content_field=args.data_column,
# fim_rate=args.fim_rate,
# fim_spm_rate=args.fim_spm_rate,
seed=args.seed,
)
return train_dataset, valid_dataset
def run_training(args, train_data, val_data):
print("Loading the model")
# disable caching mechanism when using gradient checkpointing
model = AutoModelForCausalLM.from_pretrained(
args.model_path,
trust_remote_code=True,
use_cache=not args.no_gradient_checkpointing,
)
train_data.start_iteration = 0
print(f"Starting main loop")
training_args = TrainingArguments(
output_dir=args.output_dir,
dataloader_drop_last=True,
evaluation_strategy="steps",
max_steps=args.max_steps,
eval_steps=args.eval_freq,
save_steps=args.save_freq,
logging_steps=args.log_freq,
per_device_train_batch_size=args.batch_size,
per_device_eval_batch_size=args.batch_size,
learning_rate=args.learning_rate,
lr_scheduler_type=args.lr_scheduler_type,
warmup_steps=args.num_warmup_steps,
gradient_accumulation_steps=args.gradient_accumulation_steps,
gradient_checkpointing=args.no_gradient_checkpointing,
fp16=args.no_fp16,
bf16=args.bf16,
weight_decay=args.weight_decay,
run_name=f"santacoder-{args.subset}",
# report_to="wandb", #I am not using that, so I just comment it out to avoid errors?
)
trainer = Trainer(
model=model, args=training_args, train_dataset=train_data, eval_dataset=val_data
)
print("Training...")
trainer.train(args.resume_from_checkpoint) #can resume here
print("Saving last checkpoint of the model")
model.save_pretrained(os.path.join(args.output_dir, "final_checkpoint/"))
def main(args):
tokenizer = AutoTokenizer.from_pretrained(args.model_path, use_auth_token=True)
train_dataset, eval_dataset = create_datasets(tokenizer, args)
run_training(args, train_dataset, eval_dataset)
if __name__ == "__main__":
print(sys.argv) #to abort early
args = get_args()
print(args) #see if the file actually red?
set_seed(args.seed)
os.makedirs(args.output_dir, exist_ok=True)
logging.set_verbosity_info() #lower verbosity
main(args)
|