File size: 13,666 Bytes
4ba4c44
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7dbf0713f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7dbf071480>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7dbf071510>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7dbf0715a0>", "_build": "<function ActorCriticPolicy._build at 0x7f7dbf071630>", "forward": "<function ActorCriticPolicy.forward at 0x7f7dbf0716c0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f7dbf071750>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7dbf0717e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f7dbf071870>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7dbf071900>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7dbf071990>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7dbf071a20>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f7dbfea1dc0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1693645144567673930, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAFqzOb4qwmA/K9kEveMaur5xFIe+jmYOPgAAAAAAAAAAM8nhPPNvNz+ddDu8bly2vhK23zsYo7Q9AAAAAAAAAAAzUUe8iwDBPfYUvT2G75e+7OLBPH1iXr0AAAAAAAAAAHvqhL5TGS4/ilRnPmoArb6F/EG9VZr2PQAAAAAAAAAAALSQPc+VAD1OhWC9zE5+vt/LTLz0ajC9AAAAAAAAAADm01Q9SkUMPCFxCz0XuYu+mMGUPT1mfr0AAAAAAAAAAJppPz0DvC288qTkPUNunLw/aWa9fU9NvgAAgD8AAIA/M2t/PRCPmD8Qc1c+Sj36vmBZHz6eYRE+AAAAAAAAAACasOc8PxeaPjqMq72dMJ++pxhwvYDqcrsAAAAAAAAAAMDtGj7CkE4/zp7UPT7u477NP28+OxLXvQAAAAAAAAAAM4oOvZO3QT8tw3E9BFK7vpJ6OjzOnVw8AAAAAAAAAACam0E8uODdu94XkLqf3XQ8CsQmPXgVUL0AAIA/AACAP2aKzjwHFI0+pp/WvRnEkb4C+LO9YjjnuwAAAAAAAAAAALAAO3G7ZTyIuA49YQqIvvJl+DuvIxc9AAAAAAAAAACaz7A84dyGuuXTpDpOwwG5L/lUusautrkAAIA/AACAP5qrNTyk4Is9WjxmvVuWXb7fXm+9Dv5JPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV/AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHEuBNVR1oyMAWyUS+6MAXSUR0ChiSY4ZMtcdX2UKGgGR0BwS88QqZtvaAdL8WgIR0ChiTI11nuidX2UKGgGR0BzRhesxO+JaAdL8mgIR0ChiUGNipeedX2UKGgGR0BthVtbcGkfaAdL3GgIR0ChiXtFjNILdX2UKGgGR0Bt7tHxz7uVaAdNIQFoCEdAoYmBJ5E+gXV9lChoBkdAbzIppeu3dGgHTQIBaAhHQKGJmSkj5bh1fZQoaAZHQHIIHta6jFhoB0vzaAhHQKGKx+vQnhN1fZQoaAZHQHI3c7EHdGloB0v9aAhHQKGK/8EV32V1fZQoaAZHQHFXcM3IdU9oB00BAWgIR0ChiwDVhCtzdX2UKGgGR0BzPUTj/+85aAdL/WgIR0ChixxqGlANdX2UKGgGR0ByFvsWweNlaAdL/WgIR0Chi3Qn6VMVdX2UKGgGR0ByeJ+fAbhnaAdL8mgIR0Chi/HkcS5BdX2UKGgGR0BwGMtz0Yj0aAdL7GgIR0ChjFrjghr4dX2UKGgGR0BxwCWqtHQQaAdNAQFoCEdAoYxkcKgIyHV9lChoBkdAb9qVGkN4JWgHS91oCEdAoY0RRVIZqHV9lChoBkdAcRFk+otL+WgHS+ZoCEdAoY0gMH8jzXV9lChoBkdAb8zczImw7mgHS/FoCEdAoY1o1vVEu3V9lChoBkdAcJ6oWYWtVGgHS9toCEdAoY12kvboKXV9lChoBkdAcHch99c8kmgHTQgBaAhHQKGNkyxiXpp1fZQoaAZHQHDPvkq+ajNoB0vnaAhHQKGNo1ZTyax1fZQoaAZHQHFW4nWrfchoB00BAWgIR0Chjaf/NqxkdX2UKGgGR0Byo3vZyuIRaAdNCgFoCEdAoY5m2gFotnV9lChoBkdAcUENKAavR2gHS+loCEdAoY9RezD4xnV9lChoBkdAcSr0uDjBEmgHS/doCEdAoY9mRRuTA3V9lChoBkdAcLyacZtNz2gHS/1oCEdAoY/dQGfPHHV9lChoBkdAcfcdCE6DG2gHTQgBaAhHQKGP/BciW3V1fZQoaAZHQHHChxgiNbVoB0vmaAhHQKGQPlcyFf11fZQoaAZHQHHEbBj4HopoB00HAWgIR0ChkFG/nGKidX2UKGgGR0BwC9VZLZi/aAdL7mgIR0ChkKExh2GJdX2UKGgGR0BtD+0LMLWqaAdL92gIR0ChkMVZ1V5sdX2UKGgGR0Byw4ebNKRMaAdL3GgIR0ChkRfgaWHDdX2UKGgGR0BvvdqJuVHGaAdL72gIR0ChkR943WFwdX2UKGgGR0BwJX6TGHYZaAdL5GgIR0ChkV2BreqJdX2UKGgGR0BwqLifg75maAdL/WgIR0Chkap6Y3NtdX2UKGgGR0By1zasZHd5aAdNAAFoCEdAoZq+a6STyXV9lChoBkdAcVXSYw7DEWgHTSYBaAhHQKGbFiay8jB1fZQoaAZHQHGaup4rz5JoB00DAWgIR0Chm14ht+CsdX2UKGgGR0BwtT1anrIHaAdL5WgIR0Chm6GVRk3CdX2UKGgGR0ByAeQOnVG1aAdNagFoCEdAoZvKMFUyYXV9lChoBkdAcRDvMbFS9GgHS/hoCEdAoZvy7Ackt3V9lChoBkdAce4gJC0F82gHTQEBaAhHQKGcXC7btZ51fZQoaAZHQHA9t3KSxJNoB0v3aAhHQKGcqM2m52B1fZQoaAZHQHJ7xIBikO9oB00SAWgIR0ChnLTl1bJPdX2UKGgGR0Bu3pa7mMfjaAdNCAFoCEdAoZzJ2pyZKHV9lChoBkdAcWFoexOclWgHTQABaAhHQKGdGBjnV5N1fZQoaAZHQHKIGbG3nZFoB0v2aAhHQKGdGuloDgZ1fZQoaAZHQHJ/KEzwc5toB0viaAhHQKGdJaUzKtB1fZQoaAZHQHFnvH93r2RoB0v2aAhHQKGdap4rz5J1fZQoaAZHQG+2K5TZQHloB0v7aAhHQKGeBvOQhfV1fZQoaAZHQHHtXXiBGx5oB00VAWgIR0Chnhu9eyAydX2UKGgGR0BwsnwUg0TDaAdL9GgIR0ChnmYd6sySdX2UKGgGR0ByY4tjCpFTaAdNGAFoCEdAoZ6CncclxHV9lChoBkdAcNhcLSeAeGgHS+xoCEdAoZ6YEZBLPHV9lChoBkdAcVUQJokAxWgHS+RoCEdAoZ64mw7kn3V9lChoBkdAcLXQMhHLBGgHS+hoCEdAoZ8UpRXOnnV9lChoBkdAcBhz+WGATmgHTQ4BaAhHQKGfdO1v2oN1fZQoaAZHQG+nYAbQ1JloB0viaAhHQKGfx0OEug91fZQoaAZHQHDnlxsEaEVoB0vbaAhHQKGfxx6OYIB1fZQoaAZHQG43kE9t/F1oB0v+aAhHQKGf39kz41x1fZQoaAZHQHMMPBBRhttoB0vUaAhHQKGf+o/iYLN1fZQoaAZHQHLzy7Xg9/1oB0v/aAhHQKGgG5uqFRJ1fZQoaAZHQHAdtU83dbhoB0vpaAhHQKGgN2JSBLB1fZQoaAZHQHOzIAKfFrFoB0vvaAhHQKGgWyC4Bmx1fZQoaAZHQHBAH+IdlupoB0vmaAhHQKGgha4c3l11fZQoaAZHQG7cNRekYXRoB0vwaAhHQKGhPyFwkxB1fZQoaAZHQHHgB99c8kloB0v3aAhHQKGhbpljEvV1fZQoaAZHQHBp5lBhQWNoB0vyaAhHQKGhrygf2bp1fZQoaAZHQHFF0btJFspoB0v1aAhHQKGh+xZdOZd1fZQoaAZHQG5zLpRoAXFoB00NAWgIR0Choj4TCcgAdX2UKGgGR0ByCwhJRO1waAdL42gIR0ChokWNWEK3dX2UKGgGR0BvydO45Lh8aAdNBwFoCEdAoaJqHRCx/3V9lChoBkdAcy9BMSK3u2gHS95oCEdAoaKM+s5n13V9lChoBkdAckZfCQ9zO2gHS9xoCEdAoaLf8TBZZHV9lChoBkdAbelx4IKMN2gHS+doCEdAoaLur4nF53V9lChoBkdAcE8IzWPLgWgHS+JoCEdAoaMXGKhtcnV9lChoBkdAcstW3BpHqmgHS/xoCEdAoaM12icoY3V9lChoBkdAcBFNIK+i8GgHS+hoCEdAoaNJYLb5/XV9lChoBkdAcMMVYISlFmgHS+xoCEdAoaPAvrWy1XV9lChoBkdAcehlLeyiVWgHS/1oCEdAoaPOvllsg3V9lChoBkdAcTSc+JP69GgHTQ8BaAhHQKGj5BciW3V1fZQoaAZHQG/3wdjoZAJoB0vpaAhHQKGkhP9kz411fZQoaAZHQG69gIppeu5oB0vmaAhHQKGku+fRNRF1fZQoaAZHQHGWxUzbeuVoB0vgaAhHQKGk784Pwux1fZQoaAZHQG+xPeYUnG9oB0vwaAhHQKGljW9US7J1fZQoaAZHQHHzGOlwcYJoB0vlaAhHQKGltG4qgAZ1fZQoaAZHQHB+4oiLVFxoB0viaAhHQKGmHuQ6p5x1fZQoaAZHQHE50rf+CK9oB00GAWgIR0Chpmi66J66dX2UKGgGR0ByzoG/vfCRaAdL42gIR0ChpsHndO6/dX2UKGgGR0BymQMfA9FGaAdL6WgIR0ChpsntfG+9dX2UKGgGR0BzZ2EqUeMiaAdNEgFoCEdAoabauhbno3V9lChoBkdAcjt8b70nPWgHS+BoCEdAoabkn9ehPHV9lChoBkdAcmD+9rXUY2gHS+doCEdAoadOZuyeI3V9lChoBkdAcDzofjjrA2gHS99oCEdAoafu8Empl3V9lChoBkdAcjWikO7QLWgHTRABaAhHQKGn+OvMbFV1fZQoaAZHQFJbRA8jiXJoB0vTaAhHQKGojdY4hll1fZQoaAZHQHPIVObiIcloB0vaaAhHQKGo4gyuZCx1fZQoaAZHQHM+XCKrJbNoB00dAWgIR0ChqQBClabGdX2UKGgGR0ByWZaOgg5jaAdNIAFoCEdAoalFwrDqGHV9lChoBkdAba5xgAp8W2gHS+NoCEdAoalFvXK8tnV9lChoBkdAb8qyj59E1GgHS9xoCEdAoanmhf0Eo3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 492, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True  True  True  True  True  True  True  True]", "bounded_above": "[ True  True  True  True  True  True  True  True]", "_shape": [8], "low": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "low_repr": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high_repr": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}