VinayHajare commited on
Commit
4ba4c44
·
1 Parent(s): 13f8328

Upload PPO LunarLander-v2 trained agent

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 260.20 +/- 15.85
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 263.26 +/- 19.25
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7b6b39ba1750>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b6b39ba17e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b6b39ba1870>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b6b39ba1900>", "_build": "<function ActorCriticPolicy._build at 0x7b6b39ba1990>", "forward": "<function ActorCriticPolicy.forward at 0x7b6b39ba1a20>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b6b39ba1ab0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b6b39ba1b40>", "_predict": "<function ActorCriticPolicy._predict at 0x7b6b39ba1bd0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b6b39ba1c60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b6b39ba1cf0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b6b39ba1d80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b6b39ba8480>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1693634971177827489, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJoFnTuPzkq6V/QrukSu5LQWysw6m69IOQAAgD8AAIA/ZlBOvSmwMLoIboI7EPKLNq0Iijva3pe6AACAPwAAgD8z1AS9FGiQuvlIzLqmaMC1193OuoMU7TkAAIA/AACAP5qVoLsKtxe5AsBFux4iWTfCQ6g705spOgAAgD8AAIA/ZiPsPPaEZroKLEa7b3CCN4BKjbtDGt22AACAPwAAgD/NMLc7KSB7ugIY1zoATlW0AftauygR+LkAAIA/AACAP5r5azx79oK6o70vuIJKKLPdh+05OhlNNwAAgD8AAIA/ZlFsvSkEVbrWhkI7wLysNmAGbTs+rl+6AACAPwAAgD9mJss69uw3uoY9ATgmExkyrWghOuasFrcAAIA/AACAP81MBzpcu0G6sm4xO80lPrZ35z27LqFRugAAgD8AAIA/c1uFPXtmo7r3J8W7GhxGOKguobrtNQk2AACAPwAAgD/NbPg7rquGulXBhTokIMI1QmYEuzCUm7kAAIA/AACAP2a+Cz3bfJc9u56zvRoJbb4l/wq9uwEavAAAAAAAAAAAmnszvFL4w7mmOqs64vTeNR/p8DuCfc25AACAPwAAgD/N8cE8hdP+uYKCNLzPMU41hhtFucBPtbQAAIA/AACAP2aqg72kwCy5it+oNatB4TBPUaq6djrTtAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGcmIMjNY8yMAWyUTegDjAF0lEdAmKv5W7voeXV9lChoBkdAX0ZdcB2fTWgHTegDaAhHQJitSW9lEql1fZQoaAZHQGZsUfHPu5VoB03oA2gIR0CYr4Rs/IKddX2UKGgGR0Bkr96E8JUpaAdN6ANoCEdAmLFb2xptanV9lChoBkdAZX/uE25xzmgHTegDaAhHQJiy5kVeruJ1fZQoaAZHQGJo2T5ftyBoB03oA2gIR0CYt6wUxmCidX2UKGgGR0Bf/qdhAnlXaAdN6ANoCEdAmLqtO2y9mHV9lChoBkdAZmwLEUCaJGgHTegDaAhHQJi+oEZBLPF1fZQoaAZHQGaR8ZUDMeRoB03oA2gIR0CYwW/3WWhRdX2UKGgGR0BinRqREF4caAdN6ANoCEdAmMIXivPkaXV9lChoBkdAaJbIxQBPsWgHTegDaAhHQJjCQ6GQCCB1fZQoaAZHQGbxSJCSidtoB03oA2gIR0CYwzfra/RFdX2UKGgGR0BoDLMPjGT+aAdN6ANoCEdAmNC1J17pmnV9lChoBkdAYc+KUmlZYGgHTegDaAhHQJjwADhcZ+B1fZQoaAZHQGOZWxIJ7cBoB03oA2gIR0CY8tQ+2VmjdX2UKGgGR0Bj2coF3Y+TaAdN6ANoCEdAmPX3nlnyu3V9lChoBkdAZdy4xUNrkGgHTegDaAhHQJj3t65XlsB1fZQoaAZHQGBqPm5lOGloB03oA2gIR0CY+JsTnJT3dX2UKGgGR0Bn1ZH09QoDaAdN6ANoCEdAmPqEpI+W4XV9lChoBkdAZ6POQhfShWgHTegDaAhHQJj8P4fwI+p1fZQoaAZHQGXyFvybx3FoB03oA2gIR0CY/bReC04SdX2UKGgGR0BhbMUGmk30aAdN6ANoCEdAmQIAuEmICXV9lChoBkdAY7SfaHsTnWgHTegDaAhHQJkFJz8xbjd1fZQoaAZHQGiD62F36hxoB03oA2gIR0CZCbP4EfT1dX2UKGgGR0BgHRTl1bJPaAdN6ANoCEdAmQ25MQEpzHV9lChoBkdAYSHznRsuWmgHTegDaAhHQJkOkJ/oaDR1fZQoaAZHQGKhlRP420loB03oA2gIR0CZDsf51vETdX2UKGgGR0Bld+0TlDF7aAdN6ANoCEdAmRAiqlxffHV9lChoBkdAVZidK/VRUGgHS8JoCEdAmRlore67NHV9lChoBkdAZjox7AtWdWgHTegDaAhHQJkdKpZOi351fZQoaAZHQGirOnVG0/poB03oA2gIR0CZN7ihnJ1adX2UKGgGR0BEKIyj59E1aAdL42gIR0CZOesyzolldX2UKGgGR0Bni18Ti83/aAdN6ANoCEdAmTpN+b3GoHV9lChoBkdAYvxNRm9QGmgHTegDaAhHQJk9srPMSsd1fZQoaAZHQGSWEIX0oSdoB03oA2gIR0CZP+/Ot4iYdX2UKGgGR0BkN3d43WFwaAdN6ANoCEdAmUEiJfpljHV9lChoBkdAZ4AHIIWxhWgHTegDaAhHQJlDp1r6+Fl1fZQoaAZHQGb8vR7Z39toB03oA2gIR0CZRgdnCfpVdX2UKGgGR0BmxUB4lhPTaAdN6ANoCEdAmUevdZaFEnV9lChoBkdAYlBbItDlYGgHTegDaAhHQJlMt+y7f511fZQoaAZHQGEGplar3kBoB03oA2gIR0CZUCDBMzuXdX2UKGgGR0A7ZJuEVWS2aAdL3WgIR0CZU9TB68g7dX2UKGgGR0Bkh8e8wpOOaAdN6ANoCEdAmVRyCjDbanV9lChoBkdAZtrXpW3jMmgHTegDaAhHQJlXoWKuSwJ1fZQoaAZHQGJZvKMefZpoB03oA2gIR0CZWIteD3/QdX2UKGgGR0BfmzUI9kjHaAdN6ANoCEdAmVmesPrfL3V9lChoBkdAZ/DHzYmLL2gHTegDaAhHQJljIxYaHbh1fZQoaAZHQGQh5TIeYD1oB03oA2gIR0CZh3iA2AG0dX2UKGgGR0Bho6b+cYqHaAdN6ANoCEdAmYoumixmkHV9lChoBkdAYA9nkDIRy2gHTegDaAhHQJmKoMc6vJR1fZQoaAZHQF71pjMFEApoB03oA2gIR0CZjcw7T2FndX2UKGgGR0BjvEHbAUL2aAdN6ANoCEdAmY+BLPD503V9lChoBkdAYgRaxHG0eGgHTegDaAhHQJmQXo5ggHN1fZQoaAZHQGGau7YkE9toB03oA2gIR0CZkkkyULUkdX2UKGgGR0BkOao/A0sOaAdN6ANoCEdAmZP/9tMwlHV9lChoBkdAZmdfqoqCpWgHTegDaAhHQJmaf6l+Eyt1fZQoaAZHQFQ4MlkYoApoB0veaAhHQJmd14/u9e11fZQoaAZHQGceGaQV9F5oB03oA2gIR0CZngjR2KVIdX2UKGgGR0AypPCVKPGRaAdL6WgIR0CZoGd/J/5MdX2UKGgGR0BepKKYRdyDaAdN6ANoCEdAmaHP7el9B3V9lChoBkdAXtzRQaaTfWgHTegDaAhHQJmie9EkSmJ1fZQoaAZHQGaYeBpYcNpoB03oA2gIR0CZphlyzXz2dX2UKGgGR0BgFOHxjJ+2aAdN6ANoCEdAmacKioKlYXV9lChoBkdAaGjl8PWhAWgHTegDaAhHQJmoZDSgGr11fZQoaAZHQGe4cgZCOWBoB03oA2gIR0CZsfl6Z6UrdX2UKGgGR0BozzxiG34LaAdN6ANoCEdAmdJRQ79ycXV9lChoBkdAZGFvCMxXXGgHTegDaAhHQJnU8tpVS4x1fZQoaAZHQGWCLtE5QxhoB03oA2gIR0CZ1Y2d/axpdX2UKGgGR0BlNC6nR9gGaAdN6ANoCEdAmdlcSkCV8nV9lChoBkdAZlrtYSxqwmgHTegDaAhHQJnbg2rGR3h1fZQoaAZHQGbiYACGN71oB03oA2gIR0CZ3KKbayrxdX2UKGgGR0BjqW3rleWwaAdN6ANoCEdAmegM5GSZB3V9lChoBkdAaIxKzRhMJ2gHTegDaAhHQJnrbkYGdI51fZQoaAZHQGe97NjbzshoB03oA2gIR0CZ650uUUwjdX2UKGgGR0BlKrpRoAXEaAdN6ANoCEdAme41IVdonXV9lChoBkdAZQB/Aj6eoWgHTegDaAhHQJnvTDR+jM51fZQoaAZHQGSxya3I+4doB03oA2gIR0CZ79PuogmrdX2UKGgGR0BgvYJPZZjhaAdN6ANoCEdAmfJ5JkGzKXV9lChoBkdAZzjMW43FUGgHTegDaAhHQJnzLO/tY0V1fZQoaAZHQGKhAxagVXVoB03oA2gIR0CZ9CBhx5s1dX2UKGgGR0A2sNUwSJ0oaAdL7WgIR0CZ9MDnNgSfdX2UKGgGR0BlwG/cnE2paAdN6ANoCEdAmfxcqWkadnV9lChoBkdARUOn62v0RWgHS+xoCEdAmf3yQDFId3V9lChoBkdAY4gus90RvmgHTegDaAhHQJodsePq9oN1fZQoaAZHQHKK4mPYFq1oB00gAWgIR0CaH2ktmL9/dX2UKGgGR0BjASmfoRqXaAdN6ANoCEdAmh/kY8+zMXV9lChoBkdAZNo5dWyTp2gHTegDaAhHQJogSYMOPNp1fZQoaAZHQGNwrQPZqVRoB03oA2gIR0CaIyssQNCrdX2UKGgGR0Bm9A6QvHtGaAdN6ANoCEdAmiS5fICEH3V9lChoBkdAY69rHlwLmmgHTegDaAhHQJolcq+ajN91fZQoaAZHQG19p7LMcIZoB00AA2gIR0CaKPraM72ddX2UKGgGR0Bw+nfwZwXJaAdNuwJoCEdAmitGX5WRzXV9lChoBkdAX2P8m8dxQ2gHTegDaAhHQJoyTi2lVLl1fZQoaAZHQGYfmGucME1oB03oA2gIR0CaMnncL0BfdX2UKGgGR0BfQdvn8sMBaAdN6ANoCEdAmjY01VHWjHV9lChoBkdAXrcoc7yQP2gHTegDaAhHQJo2yMXJo011fZQoaAZHQHGkESZjQRhoB01iAWgIR0CaNsmKqGUOdX2UKGgGR0BjbLNUwSJ1aAdN6ANoCEdAmjsbidat93V9lChoBkdAYj1sqrilzmgHTegDaAhHQJo9j9ycTal1fZQoaAZHQGRKBas6q81oB03oA2gIR0CaSqoQnQY2dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 268, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7dbf0713f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7dbf071480>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7dbf071510>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7dbf0715a0>", "_build": "<function ActorCriticPolicy._build at 0x7f7dbf071630>", "forward": "<function ActorCriticPolicy.forward at 0x7f7dbf0716c0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f7dbf071750>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7dbf0717e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f7dbf071870>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7dbf071900>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7dbf071990>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7dbf071a20>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f7dbfea1dc0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1693645144567673930, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAFqzOb4qwmA/K9kEveMaur5xFIe+jmYOPgAAAAAAAAAAM8nhPPNvNz+ddDu8bly2vhK23zsYo7Q9AAAAAAAAAAAzUUe8iwDBPfYUvT2G75e+7OLBPH1iXr0AAAAAAAAAAHvqhL5TGS4/ilRnPmoArb6F/EG9VZr2PQAAAAAAAAAAALSQPc+VAD1OhWC9zE5+vt/LTLz0ajC9AAAAAAAAAADm01Q9SkUMPCFxCz0XuYu+mMGUPT1mfr0AAAAAAAAAAJppPz0DvC288qTkPUNunLw/aWa9fU9NvgAAgD8AAIA/M2t/PRCPmD8Qc1c+Sj36vmBZHz6eYRE+AAAAAAAAAACasOc8PxeaPjqMq72dMJ++pxhwvYDqcrsAAAAAAAAAAMDtGj7CkE4/zp7UPT7u477NP28+OxLXvQAAAAAAAAAAM4oOvZO3QT8tw3E9BFK7vpJ6OjzOnVw8AAAAAAAAAACam0E8uODdu94XkLqf3XQ8CsQmPXgVUL0AAIA/AACAP2aKzjwHFI0+pp/WvRnEkb4C+LO9YjjnuwAAAAAAAAAAALAAO3G7ZTyIuA49YQqIvvJl+DuvIxc9AAAAAAAAAACaz7A84dyGuuXTpDpOwwG5L/lUusautrkAAIA/AACAP5qrNTyk4Is9WjxmvVuWXb7fXm+9Dv5JPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV/AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHEuBNVR1oyMAWyUS+6MAXSUR0ChiSY4ZMtcdX2UKGgGR0BwS88QqZtvaAdL8WgIR0ChiTI11nuidX2UKGgGR0BzRhesxO+JaAdL8mgIR0ChiUGNipeedX2UKGgGR0BthVtbcGkfaAdL3GgIR0ChiXtFjNILdX2UKGgGR0Bt7tHxz7uVaAdNIQFoCEdAoYmBJ5E+gXV9lChoBkdAbzIppeu3dGgHTQIBaAhHQKGJmSkj5bh1fZQoaAZHQHIIHta6jFhoB0vzaAhHQKGKx+vQnhN1fZQoaAZHQHI3c7EHdGloB0v9aAhHQKGK/8EV32V1fZQoaAZHQHFXcM3IdU9oB00BAWgIR0ChiwDVhCtzdX2UKGgGR0BzPUTj/+85aAdL/WgIR0ChixxqGlANdX2UKGgGR0ByFvsWweNlaAdL/WgIR0Chi3Qn6VMVdX2UKGgGR0ByeJ+fAbhnaAdL8mgIR0Chi/HkcS5BdX2UKGgGR0BwGMtz0Yj0aAdL7GgIR0ChjFrjghr4dX2UKGgGR0BxwCWqtHQQaAdNAQFoCEdAoYxkcKgIyHV9lChoBkdAb9qVGkN4JWgHS91oCEdAoY0RRVIZqHV9lChoBkdAcRFk+otL+WgHS+ZoCEdAoY0gMH8jzXV9lChoBkdAb8zczImw7mgHS/FoCEdAoY1o1vVEu3V9lChoBkdAcJ6oWYWtVGgHS9toCEdAoY12kvboKXV9lChoBkdAcHch99c8kmgHTQgBaAhHQKGNkyxiXpp1fZQoaAZHQHDPvkq+ajNoB0vnaAhHQKGNo1ZTyax1fZQoaAZHQHFW4nWrfchoB00BAWgIR0Chjaf/NqxkdX2UKGgGR0Byo3vZyuIRaAdNCgFoCEdAoY5m2gFotnV9lChoBkdAcUENKAavR2gHS+loCEdAoY9RezD4xnV9lChoBkdAcSr0uDjBEmgHS/doCEdAoY9mRRuTA3V9lChoBkdAcLyacZtNz2gHS/1oCEdAoY/dQGfPHHV9lChoBkdAcfcdCE6DG2gHTQgBaAhHQKGP/BciW3V1fZQoaAZHQHHChxgiNbVoB0vmaAhHQKGQPlcyFf11fZQoaAZHQHHEbBj4HopoB00HAWgIR0ChkFG/nGKidX2UKGgGR0BwC9VZLZi/aAdL7mgIR0ChkKExh2GJdX2UKGgGR0BtD+0LMLWqaAdL92gIR0ChkMVZ1V5sdX2UKGgGR0Byw4ebNKRMaAdL3GgIR0ChkRfgaWHDdX2UKGgGR0BvvdqJuVHGaAdL72gIR0ChkR943WFwdX2UKGgGR0BwJX6TGHYZaAdL5GgIR0ChkV2BreqJdX2UKGgGR0BwqLifg75maAdL/WgIR0Chkap6Y3NtdX2UKGgGR0By1zasZHd5aAdNAAFoCEdAoZq+a6STyXV9lChoBkdAcVXSYw7DEWgHTSYBaAhHQKGbFiay8jB1fZQoaAZHQHGaup4rz5JoB00DAWgIR0Chm14ht+CsdX2UKGgGR0BwtT1anrIHaAdL5WgIR0Chm6GVRk3CdX2UKGgGR0ByAeQOnVG1aAdNagFoCEdAoZvKMFUyYXV9lChoBkdAcRDvMbFS9GgHS/hoCEdAoZvy7Ackt3V9lChoBkdAce4gJC0F82gHTQEBaAhHQKGcXC7btZ51fZQoaAZHQHA9t3KSxJNoB0v3aAhHQKGcqM2m52B1fZQoaAZHQHJ7xIBikO9oB00SAWgIR0ChnLTl1bJPdX2UKGgGR0Bu3pa7mMfjaAdNCAFoCEdAoZzJ2pyZKHV9lChoBkdAcWFoexOclWgHTQABaAhHQKGdGBjnV5N1fZQoaAZHQHKIGbG3nZFoB0v2aAhHQKGdGuloDgZ1fZQoaAZHQHJ/KEzwc5toB0viaAhHQKGdJaUzKtB1fZQoaAZHQHFnvH93r2RoB0v2aAhHQKGdap4rz5J1fZQoaAZHQG+2K5TZQHloB0v7aAhHQKGeBvOQhfV1fZQoaAZHQHHtXXiBGx5oB00VAWgIR0Chnhu9eyAydX2UKGgGR0BwsnwUg0TDaAdL9GgIR0ChnmYd6sySdX2UKGgGR0ByY4tjCpFTaAdNGAFoCEdAoZ6CncclxHV9lChoBkdAcNhcLSeAeGgHS+xoCEdAoZ6YEZBLPHV9lChoBkdAcVUQJokAxWgHS+RoCEdAoZ64mw7kn3V9lChoBkdAcLXQMhHLBGgHS+hoCEdAoZ8UpRXOnnV9lChoBkdAcBhz+WGATmgHTQ4BaAhHQKGfdO1v2oN1fZQoaAZHQG+nYAbQ1JloB0viaAhHQKGfx0OEug91fZQoaAZHQHDnlxsEaEVoB0vbaAhHQKGfxx6OYIB1fZQoaAZHQG43kE9t/F1oB0v+aAhHQKGf39kz41x1fZQoaAZHQHMMPBBRhttoB0vUaAhHQKGf+o/iYLN1fZQoaAZHQHLzy7Xg9/1oB0v/aAhHQKGgG5uqFRJ1fZQoaAZHQHAdtU83dbhoB0vpaAhHQKGgN2JSBLB1fZQoaAZHQHOzIAKfFrFoB0vvaAhHQKGgWyC4Bmx1fZQoaAZHQHBAH+IdlupoB0vmaAhHQKGgha4c3l11fZQoaAZHQG7cNRekYXRoB0vwaAhHQKGhPyFwkxB1fZQoaAZHQHHgB99c8kloB0v3aAhHQKGhbpljEvV1fZQoaAZHQHBp5lBhQWNoB0vyaAhHQKGhrygf2bp1fZQoaAZHQHFF0btJFspoB0v1aAhHQKGh+xZdOZd1fZQoaAZHQG5zLpRoAXFoB00NAWgIR0Choj4TCcgAdX2UKGgGR0ByCwhJRO1waAdL42gIR0ChokWNWEK3dX2UKGgGR0BvydO45Lh8aAdNBwFoCEdAoaJqHRCx/3V9lChoBkdAcy9BMSK3u2gHS95oCEdAoaKM+s5n13V9lChoBkdAckZfCQ9zO2gHS9xoCEdAoaLf8TBZZHV9lChoBkdAbelx4IKMN2gHS+doCEdAoaLur4nF53V9lChoBkdAcE8IzWPLgWgHS+JoCEdAoaMXGKhtcnV9lChoBkdAcstW3BpHqmgHS/xoCEdAoaM12icoY3V9lChoBkdAcBFNIK+i8GgHS+hoCEdAoaNJYLb5/XV9lChoBkdAcMMVYISlFmgHS+xoCEdAoaPAvrWy1XV9lChoBkdAcehlLeyiVWgHS/1oCEdAoaPOvllsg3V9lChoBkdAcTSc+JP69GgHTQ8BaAhHQKGj5BciW3V1fZQoaAZHQG/3wdjoZAJoB0vpaAhHQKGkhP9kz411fZQoaAZHQG69gIppeu5oB0vmaAhHQKGku+fRNRF1fZQoaAZHQHGWxUzbeuVoB0vgaAhHQKGk784Pwux1fZQoaAZHQG+xPeYUnG9oB0vwaAhHQKGljW9US7J1fZQoaAZHQHHzGOlwcYJoB0vlaAhHQKGltG4qgAZ1fZQoaAZHQHB+4oiLVFxoB0viaAhHQKGmHuQ6p5x1fZQoaAZHQHE50rf+CK9oB00GAWgIR0Chpmi66J66dX2UKGgGR0ByzoG/vfCRaAdL42gIR0ChpsHndO6/dX2UKGgGR0BymQMfA9FGaAdL6WgIR0ChpsntfG+9dX2UKGgGR0BzZ2EqUeMiaAdNEgFoCEdAoabauhbno3V9lChoBkdAcjt8b70nPWgHS+BoCEdAoabkn9ehPHV9lChoBkdAcmD+9rXUY2gHS+doCEdAoadOZuyeI3V9lChoBkdAcDzofjjrA2gHS99oCEdAoafu8Empl3V9lChoBkdAcjWikO7QLWgHTRABaAhHQKGn+OvMbFV1fZQoaAZHQFJbRA8jiXJoB0vTaAhHQKGojdY4hll1fZQoaAZHQHPIVObiIcloB0vaaAhHQKGo4gyuZCx1fZQoaAZHQHM+XCKrJbNoB00dAWgIR0ChqQBClabGdX2UKGgGR0ByWZaOgg5jaAdNIAFoCEdAoalFwrDqGHV9lChoBkdAba5xgAp8W2gHS+NoCEdAoalFvXK8tnV9lChoBkdAb8qyj59E1GgHS9xoCEdAoanmhf0Eo3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 492, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:46c9bd2352ba2706b1a46f4d1ffd04b49dddc890fd3ffd848fe82b6e53c6120f
3
- size 146746
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e90b0b8dd60f9b802b542301fa48e8bfcde2b0b48aa00ec2982597f06bcd3d1e
3
+ size 146662
ppo-LunarLander-v2/data CHANGED
@@ -4,34 +4,34 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7b6b39ba1750>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b6b39ba17e0>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b6b39ba1870>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b6b39ba1900>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7b6b39ba1990>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7b6b39ba1a20>",
13
- "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b6b39ba1ab0>",
14
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b6b39ba1b40>",
15
- "_predict": "<function ActorCriticPolicy._predict at 0x7b6b39ba1bd0>",
16
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b6b39ba1c60>",
17
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b6b39ba1cf0>",
18
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b6b39ba1d80>",
19
  "__abstractmethods__": "frozenset()",
20
- "_abc_impl": "<_abc._abc_data object at 0x7b6b39ba8480>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
24
- "num_timesteps": 1015808,
25
- "_total_timesteps": 1000000,
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
- "start_time": 1693634971177827489,
30
  "learning_rate": 0.0003,
31
  "tensorboard_log": null,
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
- ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJoFnTuPzkq6V/QrukSu5LQWysw6m69IOQAAgD8AAIA/ZlBOvSmwMLoIboI7EPKLNq0Iijva3pe6AACAPwAAgD8z1AS9FGiQuvlIzLqmaMC1193OuoMU7TkAAIA/AACAP5qVoLsKtxe5AsBFux4iWTfCQ6g705spOgAAgD8AAIA/ZiPsPPaEZroKLEa7b3CCN4BKjbtDGt22AACAPwAAgD/NMLc7KSB7ugIY1zoATlW0AftauygR+LkAAIA/AACAP5r5azx79oK6o70vuIJKKLPdh+05OhlNNwAAgD8AAIA/ZlFsvSkEVbrWhkI7wLysNmAGbTs+rl+6AACAPwAAgD9mJss69uw3uoY9ATgmExkyrWghOuasFrcAAIA/AACAP81MBzpcu0G6sm4xO80lPrZ35z27LqFRugAAgD8AAIA/c1uFPXtmo7r3J8W7GhxGOKguobrtNQk2AACAPwAAgD/NbPg7rquGulXBhTokIMI1QmYEuzCUm7kAAIA/AACAP2a+Cz3bfJc9u56zvRoJbb4l/wq9uwEavAAAAAAAAAAAmnszvFL4w7mmOqs64vTeNR/p8DuCfc25AACAPwAAgD/N8cE8hdP+uYKCNLzPMU41hhtFucBPtbQAAIA/AACAP2aqg72kwCy5it+oNatB4TBPUaq6djrTtAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
@@ -41,17 +41,17 @@
41
  "_episode_num": 0,
42
  "use_sde": false,
43
  "sde_sample_freq": -1,
44
- "_current_progress_remaining": -0.015808000000000044,
45
  "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
- ":serialized:": "gAWVPQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGcmIMjNY8yMAWyUTegDjAF0lEdAmKv5W7voeXV9lChoBkdAX0ZdcB2fTWgHTegDaAhHQJitSW9lEql1fZQoaAZHQGZsUfHPu5VoB03oA2gIR0CYr4Rs/IKddX2UKGgGR0Bkr96E8JUpaAdN6ANoCEdAmLFb2xptanV9lChoBkdAZX/uE25xzmgHTegDaAhHQJiy5kVeruJ1fZQoaAZHQGJo2T5ftyBoB03oA2gIR0CYt6wUxmCidX2UKGgGR0Bf/qdhAnlXaAdN6ANoCEdAmLqtO2y9mHV9lChoBkdAZmwLEUCaJGgHTegDaAhHQJi+oEZBLPF1fZQoaAZHQGaR8ZUDMeRoB03oA2gIR0CYwW/3WWhRdX2UKGgGR0BinRqREF4caAdN6ANoCEdAmMIXivPkaXV9lChoBkdAaJbIxQBPsWgHTegDaAhHQJjCQ6GQCCB1fZQoaAZHQGbxSJCSidtoB03oA2gIR0CYwzfra/RFdX2UKGgGR0BoDLMPjGT+aAdN6ANoCEdAmNC1J17pmnV9lChoBkdAYc+KUmlZYGgHTegDaAhHQJjwADhcZ+B1fZQoaAZHQGOZWxIJ7cBoB03oA2gIR0CY8tQ+2VmjdX2UKGgGR0Bj2coF3Y+TaAdN6ANoCEdAmPX3nlnyu3V9lChoBkdAZdy4xUNrkGgHTegDaAhHQJj3t65XlsB1fZQoaAZHQGBqPm5lOGloB03oA2gIR0CY+JsTnJT3dX2UKGgGR0Bn1ZH09QoDaAdN6ANoCEdAmPqEpI+W4XV9lChoBkdAZ6POQhfShWgHTegDaAhHQJj8P4fwI+p1fZQoaAZHQGXyFvybx3FoB03oA2gIR0CY/bReC04SdX2UKGgGR0BhbMUGmk30aAdN6ANoCEdAmQIAuEmICXV9lChoBkdAY7SfaHsTnWgHTegDaAhHQJkFJz8xbjd1fZQoaAZHQGiD62F36hxoB03oA2gIR0CZCbP4EfT1dX2UKGgGR0BgHRTl1bJPaAdN6ANoCEdAmQ25MQEpzHV9lChoBkdAYSHznRsuWmgHTegDaAhHQJkOkJ/oaDR1fZQoaAZHQGKhlRP420loB03oA2gIR0CZDsf51vETdX2UKGgGR0Bld+0TlDF7aAdN6ANoCEdAmRAiqlxffHV9lChoBkdAVZidK/VRUGgHS8JoCEdAmRlore67NHV9lChoBkdAZjox7AtWdWgHTegDaAhHQJkdKpZOi351fZQoaAZHQGirOnVG0/poB03oA2gIR0CZN7ihnJ1adX2UKGgGR0BEKIyj59E1aAdL42gIR0CZOesyzolldX2UKGgGR0Bni18Ti83/aAdN6ANoCEdAmTpN+b3GoHV9lChoBkdAYvxNRm9QGmgHTegDaAhHQJk9srPMSsd1fZQoaAZHQGSWEIX0oSdoB03oA2gIR0CZP+/Ot4iYdX2UKGgGR0BkN3d43WFwaAdN6ANoCEdAmUEiJfpljHV9lChoBkdAZ4AHIIWxhWgHTegDaAhHQJlDp1r6+Fl1fZQoaAZHQGb8vR7Z39toB03oA2gIR0CZRgdnCfpVdX2UKGgGR0BmxUB4lhPTaAdN6ANoCEdAmUevdZaFEnV9lChoBkdAYlBbItDlYGgHTegDaAhHQJlMt+y7f511fZQoaAZHQGEGplar3kBoB03oA2gIR0CZUCDBMzuXdX2UKGgGR0A7ZJuEVWS2aAdL3WgIR0CZU9TB68g7dX2UKGgGR0Bkh8e8wpOOaAdN6ANoCEdAmVRyCjDbanV9lChoBkdAZtrXpW3jMmgHTegDaAhHQJlXoWKuSwJ1fZQoaAZHQGJZvKMefZpoB03oA2gIR0CZWIteD3/QdX2UKGgGR0BfmzUI9kjHaAdN6ANoCEdAmVmesPrfL3V9lChoBkdAZ/DHzYmLL2gHTegDaAhHQJljIxYaHbh1fZQoaAZHQGQh5TIeYD1oB03oA2gIR0CZh3iA2AG0dX2UKGgGR0Bho6b+cYqHaAdN6ANoCEdAmYoumixmkHV9lChoBkdAYA9nkDIRy2gHTegDaAhHQJmKoMc6vJR1fZQoaAZHQF71pjMFEApoB03oA2gIR0CZjcw7T2FndX2UKGgGR0BjvEHbAUL2aAdN6ANoCEdAmY+BLPD503V9lChoBkdAYgRaxHG0eGgHTegDaAhHQJmQXo5ggHN1fZQoaAZHQGGau7YkE9toB03oA2gIR0CZkkkyULUkdX2UKGgGR0BkOao/A0sOaAdN6ANoCEdAmZP/9tMwlHV9lChoBkdAZmdfqoqCpWgHTegDaAhHQJmaf6l+Eyt1fZQoaAZHQFQ4MlkYoApoB0veaAhHQJmd14/u9e11fZQoaAZHQGceGaQV9F5oB03oA2gIR0CZngjR2KVIdX2UKGgGR0AypPCVKPGRaAdL6WgIR0CZoGd/J/5MdX2UKGgGR0BepKKYRdyDaAdN6ANoCEdAmaHP7el9B3V9lChoBkdAXtzRQaaTfWgHTegDaAhHQJmie9EkSmJ1fZQoaAZHQGaYeBpYcNpoB03oA2gIR0CZphlyzXz2dX2UKGgGR0BgFOHxjJ+2aAdN6ANoCEdAmacKioKlYXV9lChoBkdAaGjl8PWhAWgHTegDaAhHQJmoZDSgGr11fZQoaAZHQGe4cgZCOWBoB03oA2gIR0CZsfl6Z6UrdX2UKGgGR0BozzxiG34LaAdN6ANoCEdAmdJRQ79ycXV9lChoBkdAZGFvCMxXXGgHTegDaAhHQJnU8tpVS4x1fZQoaAZHQGWCLtE5QxhoB03oA2gIR0CZ1Y2d/axpdX2UKGgGR0BlNC6nR9gGaAdN6ANoCEdAmdlcSkCV8nV9lChoBkdAZlrtYSxqwmgHTegDaAhHQJnbg2rGR3h1fZQoaAZHQGbiYACGN71oB03oA2gIR0CZ3KKbayrxdX2UKGgGR0BjqW3rleWwaAdN6ANoCEdAmegM5GSZB3V9lChoBkdAaIxKzRhMJ2gHTegDaAhHQJnrbkYGdI51fZQoaAZHQGe97NjbzshoB03oA2gIR0CZ650uUUwjdX2UKGgGR0BlKrpRoAXEaAdN6ANoCEdAme41IVdonXV9lChoBkdAZQB/Aj6eoWgHTegDaAhHQJnvTDR+jM51fZQoaAZHQGSxya3I+4doB03oA2gIR0CZ79PuogmrdX2UKGgGR0BgvYJPZZjhaAdN6ANoCEdAmfJ5JkGzKXV9lChoBkdAZzjMW43FUGgHTegDaAhHQJnzLO/tY0V1fZQoaAZHQGKhAxagVXVoB03oA2gIR0CZ9CBhx5s1dX2UKGgGR0A2sNUwSJ0oaAdL7WgIR0CZ9MDnNgSfdX2UKGgGR0BlwG/cnE2paAdN6ANoCEdAmfxcqWkadnV9lChoBkdARUOn62v0RWgHS+xoCEdAmf3yQDFId3V9lChoBkdAY4gus90RvmgHTegDaAhHQJodsePq9oN1fZQoaAZHQHKK4mPYFq1oB00gAWgIR0CaH2ktmL9/dX2UKGgGR0BjASmfoRqXaAdN6ANoCEdAmh/kY8+zMXV9lChoBkdAZNo5dWyTp2gHTegDaAhHQJogSYMOPNp1fZQoaAZHQGNwrQPZqVRoB03oA2gIR0CaIyssQNCrdX2UKGgGR0Bm9A6QvHtGaAdN6ANoCEdAmiS5fICEH3V9lChoBkdAY69rHlwLmmgHTegDaAhHQJolcq+ajN91fZQoaAZHQG19p7LMcIZoB00AA2gIR0CaKPraM72ddX2UKGgGR0Bw+nfwZwXJaAdNuwJoCEdAmitGX5WRzXV9lChoBkdAX2P8m8dxQ2gHTegDaAhHQJoyTi2lVLl1fZQoaAZHQGYfmGucME1oB03oA2gIR0CaMnncL0BfdX2UKGgGR0BfQdvn8sMBaAdN6ANoCEdAmjY01VHWjHV9lChoBkdAXrcoc7yQP2gHTegDaAhHQJo2yMXJo011fZQoaAZHQHGkESZjQRhoB01iAWgIR0CaNsmKqGUOdX2UKGgGR0BjbLNUwSJ1aAdN6ANoCEdAmjsbidat93V9lChoBkdAYj1sqrilzmgHTegDaAhHQJo9j9ycTal1fZQoaAZHQGRKBas6q81oB03oA2gIR0CaSqoQnQY2dWUu"
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
52
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
  },
54
- "_n_updates": 268,
55
  "observation_space": {
56
  ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
  ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7dbf0713f0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7dbf071480>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7dbf071510>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7dbf0715a0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f7dbf071630>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f7dbf0716c0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f7dbf071750>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7dbf0717e0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f7dbf071870>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7dbf071900>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7dbf071990>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7dbf071a20>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f7dbfea1dc0>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
24
+ "num_timesteps": 2015232,
25
+ "_total_timesteps": 2000000,
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
+ "start_time": 1693645144567673930,
30
  "learning_rate": 0.0003,
31
  "tensorboard_log": null,
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAFqzOb4qwmA/K9kEveMaur5xFIe+jmYOPgAAAAAAAAAAM8nhPPNvNz+ddDu8bly2vhK23zsYo7Q9AAAAAAAAAAAzUUe8iwDBPfYUvT2G75e+7OLBPH1iXr0AAAAAAAAAAHvqhL5TGS4/ilRnPmoArb6F/EG9VZr2PQAAAAAAAAAAALSQPc+VAD1OhWC9zE5+vt/LTLz0ajC9AAAAAAAAAADm01Q9SkUMPCFxCz0XuYu+mMGUPT1mfr0AAAAAAAAAAJppPz0DvC288qTkPUNunLw/aWa9fU9NvgAAgD8AAIA/M2t/PRCPmD8Qc1c+Sj36vmBZHz6eYRE+AAAAAAAAAACasOc8PxeaPjqMq72dMJ++pxhwvYDqcrsAAAAAAAAAAMDtGj7CkE4/zp7UPT7u477NP28+OxLXvQAAAAAAAAAAM4oOvZO3QT8tw3E9BFK7vpJ6OjzOnVw8AAAAAAAAAACam0E8uODdu94XkLqf3XQ8CsQmPXgVUL0AAIA/AACAP2aKzjwHFI0+pp/WvRnEkb4C+LO9YjjnuwAAAAAAAAAAALAAO3G7ZTyIuA49YQqIvvJl+DuvIxc9AAAAAAAAAACaz7A84dyGuuXTpDpOwwG5L/lUusautrkAAIA/AACAP5qrNTyk4Is9WjxmvVuWXb7fXm+9Dv5JPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
 
41
  "_episode_num": 0,
42
  "use_sde": false,
43
  "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.007616000000000067,
45
  "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV/AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHEuBNVR1oyMAWyUS+6MAXSUR0ChiSY4ZMtcdX2UKGgGR0BwS88QqZtvaAdL8WgIR0ChiTI11nuidX2UKGgGR0BzRhesxO+JaAdL8mgIR0ChiUGNipeedX2UKGgGR0BthVtbcGkfaAdL3GgIR0ChiXtFjNILdX2UKGgGR0Bt7tHxz7uVaAdNIQFoCEdAoYmBJ5E+gXV9lChoBkdAbzIppeu3dGgHTQIBaAhHQKGJmSkj5bh1fZQoaAZHQHIIHta6jFhoB0vzaAhHQKGKx+vQnhN1fZQoaAZHQHI3c7EHdGloB0v9aAhHQKGK/8EV32V1fZQoaAZHQHFXcM3IdU9oB00BAWgIR0ChiwDVhCtzdX2UKGgGR0BzPUTj/+85aAdL/WgIR0ChixxqGlANdX2UKGgGR0ByFvsWweNlaAdL/WgIR0Chi3Qn6VMVdX2UKGgGR0ByeJ+fAbhnaAdL8mgIR0Chi/HkcS5BdX2UKGgGR0BwGMtz0Yj0aAdL7GgIR0ChjFrjghr4dX2UKGgGR0BxwCWqtHQQaAdNAQFoCEdAoYxkcKgIyHV9lChoBkdAb9qVGkN4JWgHS91oCEdAoY0RRVIZqHV9lChoBkdAcRFk+otL+WgHS+ZoCEdAoY0gMH8jzXV9lChoBkdAb8zczImw7mgHS/FoCEdAoY1o1vVEu3V9lChoBkdAcJ6oWYWtVGgHS9toCEdAoY12kvboKXV9lChoBkdAcHch99c8kmgHTQgBaAhHQKGNkyxiXpp1fZQoaAZHQHDPvkq+ajNoB0vnaAhHQKGNo1ZTyax1fZQoaAZHQHFW4nWrfchoB00BAWgIR0Chjaf/NqxkdX2UKGgGR0Byo3vZyuIRaAdNCgFoCEdAoY5m2gFotnV9lChoBkdAcUENKAavR2gHS+loCEdAoY9RezD4xnV9lChoBkdAcSr0uDjBEmgHS/doCEdAoY9mRRuTA3V9lChoBkdAcLyacZtNz2gHS/1oCEdAoY/dQGfPHHV9lChoBkdAcfcdCE6DG2gHTQgBaAhHQKGP/BciW3V1fZQoaAZHQHHChxgiNbVoB0vmaAhHQKGQPlcyFf11fZQoaAZHQHHEbBj4HopoB00HAWgIR0ChkFG/nGKidX2UKGgGR0BwC9VZLZi/aAdL7mgIR0ChkKExh2GJdX2UKGgGR0BtD+0LMLWqaAdL92gIR0ChkMVZ1V5sdX2UKGgGR0Byw4ebNKRMaAdL3GgIR0ChkRfgaWHDdX2UKGgGR0BvvdqJuVHGaAdL72gIR0ChkR943WFwdX2UKGgGR0BwJX6TGHYZaAdL5GgIR0ChkV2BreqJdX2UKGgGR0BwqLifg75maAdL/WgIR0Chkap6Y3NtdX2UKGgGR0By1zasZHd5aAdNAAFoCEdAoZq+a6STyXV9lChoBkdAcVXSYw7DEWgHTSYBaAhHQKGbFiay8jB1fZQoaAZHQHGaup4rz5JoB00DAWgIR0Chm14ht+CsdX2UKGgGR0BwtT1anrIHaAdL5WgIR0Chm6GVRk3CdX2UKGgGR0ByAeQOnVG1aAdNagFoCEdAoZvKMFUyYXV9lChoBkdAcRDvMbFS9GgHS/hoCEdAoZvy7Ackt3V9lChoBkdAce4gJC0F82gHTQEBaAhHQKGcXC7btZ51fZQoaAZHQHA9t3KSxJNoB0v3aAhHQKGcqM2m52B1fZQoaAZHQHJ7xIBikO9oB00SAWgIR0ChnLTl1bJPdX2UKGgGR0Bu3pa7mMfjaAdNCAFoCEdAoZzJ2pyZKHV9lChoBkdAcWFoexOclWgHTQABaAhHQKGdGBjnV5N1fZQoaAZHQHKIGbG3nZFoB0v2aAhHQKGdGuloDgZ1fZQoaAZHQHJ/KEzwc5toB0viaAhHQKGdJaUzKtB1fZQoaAZHQHFnvH93r2RoB0v2aAhHQKGdap4rz5J1fZQoaAZHQG+2K5TZQHloB0v7aAhHQKGeBvOQhfV1fZQoaAZHQHHtXXiBGx5oB00VAWgIR0Chnhu9eyAydX2UKGgGR0BwsnwUg0TDaAdL9GgIR0ChnmYd6sySdX2UKGgGR0ByY4tjCpFTaAdNGAFoCEdAoZ6CncclxHV9lChoBkdAcNhcLSeAeGgHS+xoCEdAoZ6YEZBLPHV9lChoBkdAcVUQJokAxWgHS+RoCEdAoZ64mw7kn3V9lChoBkdAcLXQMhHLBGgHS+hoCEdAoZ8UpRXOnnV9lChoBkdAcBhz+WGATmgHTQ4BaAhHQKGfdO1v2oN1fZQoaAZHQG+nYAbQ1JloB0viaAhHQKGfx0OEug91fZQoaAZHQHDnlxsEaEVoB0vbaAhHQKGfxx6OYIB1fZQoaAZHQG43kE9t/F1oB0v+aAhHQKGf39kz41x1fZQoaAZHQHMMPBBRhttoB0vUaAhHQKGf+o/iYLN1fZQoaAZHQHLzy7Xg9/1oB0v/aAhHQKGgG5uqFRJ1fZQoaAZHQHAdtU83dbhoB0vpaAhHQKGgN2JSBLB1fZQoaAZHQHOzIAKfFrFoB0vvaAhHQKGgWyC4Bmx1fZQoaAZHQHBAH+IdlupoB0vmaAhHQKGgha4c3l11fZQoaAZHQG7cNRekYXRoB0vwaAhHQKGhPyFwkxB1fZQoaAZHQHHgB99c8kloB0v3aAhHQKGhbpljEvV1fZQoaAZHQHBp5lBhQWNoB0vyaAhHQKGhrygf2bp1fZQoaAZHQHFF0btJFspoB0v1aAhHQKGh+xZdOZd1fZQoaAZHQG5zLpRoAXFoB00NAWgIR0Choj4TCcgAdX2UKGgGR0ByCwhJRO1waAdL42gIR0ChokWNWEK3dX2UKGgGR0BvydO45Lh8aAdNBwFoCEdAoaJqHRCx/3V9lChoBkdAcy9BMSK3u2gHS95oCEdAoaKM+s5n13V9lChoBkdAckZfCQ9zO2gHS9xoCEdAoaLf8TBZZHV9lChoBkdAbelx4IKMN2gHS+doCEdAoaLur4nF53V9lChoBkdAcE8IzWPLgWgHS+JoCEdAoaMXGKhtcnV9lChoBkdAcstW3BpHqmgHS/xoCEdAoaM12icoY3V9lChoBkdAcBFNIK+i8GgHS+hoCEdAoaNJYLb5/XV9lChoBkdAcMMVYISlFmgHS+xoCEdAoaPAvrWy1XV9lChoBkdAcehlLeyiVWgHS/1oCEdAoaPOvllsg3V9lChoBkdAcTSc+JP69GgHTQ8BaAhHQKGj5BciW3V1fZQoaAZHQG/3wdjoZAJoB0vpaAhHQKGkhP9kz411fZQoaAZHQG69gIppeu5oB0vmaAhHQKGku+fRNRF1fZQoaAZHQHGWxUzbeuVoB0vgaAhHQKGk784Pwux1fZQoaAZHQG+xPeYUnG9oB0vwaAhHQKGljW9US7J1fZQoaAZHQHHzGOlwcYJoB0vlaAhHQKGltG4qgAZ1fZQoaAZHQHB+4oiLVFxoB0viaAhHQKGmHuQ6p5x1fZQoaAZHQHE50rf+CK9oB00GAWgIR0Chpmi66J66dX2UKGgGR0ByzoG/vfCRaAdL42gIR0ChpsHndO6/dX2UKGgGR0BymQMfA9FGaAdL6WgIR0ChpsntfG+9dX2UKGgGR0BzZ2EqUeMiaAdNEgFoCEdAoabauhbno3V9lChoBkdAcjt8b70nPWgHS+BoCEdAoabkn9ehPHV9lChoBkdAcmD+9rXUY2gHS+doCEdAoadOZuyeI3V9lChoBkdAcDzofjjrA2gHS99oCEdAoafu8Empl3V9lChoBkdAcjWikO7QLWgHTRABaAhHQKGn+OvMbFV1fZQoaAZHQFJbRA8jiXJoB0vTaAhHQKGojdY4hll1fZQoaAZHQHPIVObiIcloB0vaaAhHQKGo4gyuZCx1fZQoaAZHQHM+XCKrJbNoB00dAWgIR0ChqQBClabGdX2UKGgGR0ByWZaOgg5jaAdNIAFoCEdAoalFwrDqGHV9lChoBkdAba5xgAp8W2gHS+NoCEdAoalFvXK8tnV9lChoBkdAb8qyj59E1GgHS9xoCEdAoanmhf0Eo3VlLg=="
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
52
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
  },
54
+ "_n_updates": 492,
55
  "observation_space": {
56
  ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
  ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
ppo-LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:02d57bbf5476e8d1b612bcb19b42644a0a30052700524034969c8127c91a2cb0
3
  size 87929
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d87f9d4ae22332cde8f4c3df9e2aed7d26e37a4def41b19f892e4c4964a02b59
3
  size 87929
ppo-LunarLander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:002c0e9e2f377574fe2ea119f058ab7c45d7b43781ba67640e796c5a78627f6a
3
  size 43329
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e4c75409a7099e70ac8f3fb1972de73f72dc3ce212b8c681af2cc27c82dfdac8
3
  size 43329
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 260.2032521, "std_reward": 15.851701527384806, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-02T06:37:47.571522"}
 
1
+ {"mean_reward": 263.259249, "std_reward": 19.25499847590454, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-02T09:40:22.760441"}