File size: 2,578 Bytes
c26fead e9ef064 c26fead 22abae5 99df123 07565d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
---
language:
- ru
- en
datasets:
- zjkarina/Vikhr_instruct
---
```python
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
with ('generation_config.json').open('w') as fp:
json.dump({
"pad_token_id": 0,
"bos_token_id": 1,
"eos_token_id": 2,
"temperature": 0.3,
"top_p": 0.9,
"top_k": 50,
"do_sample": True,
"max_new_tokens": 1536,
"repetition_penalty": 1.1,
"no_repeat_ngram_size": 15,
}, fp, indent=4)
MODEL_NAME = "Vikhrmodels/Vikhr_instruct"
TEMPLATE = "<s>{role}\n{content}</s>\n"
SYSTEM_PROMPT = "Ты – полезный помощник по имени Вихрь. Ты разговариваешь с людьми и помогаешь им."
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
model.to('cuda')
model.eval()
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, use_fast=False)
generation_config = GenerationConfig.from_pretrained("generation_config.json")
class Conversation:
def __init__(
self,
message_template=DEFAULT_MESSAGE_TEMPLATE,
system_prompt=DEFAULT_SYSTEM_PROMPT,
):
self.message_template = message_template
self.messages = [{
"role": "system",
"content": system_prompt
}]
def add_user_message(self, message):
self.messages.append({
"role": "user",
"content": message
})
def get_prompt(self, tokenizer):
final_text = ""
for message in self.messages:
message_text = self.message_template.format(**message)
final_text += message_text
final_text += 'bot'
return final_text.strip()
def generate(model, tokenizer, prompt, generation_config):
data = tokenizer(prompt, return_tensors="pt")
data = {k: v.to(model.device) for k, v in data.items()}
output_ids = model.generate(
**data,
generation_config=generation_config
)[0]
output_ids = output_ids[len(data["input_ids"][0]):]
output = tokenizer.decode(output_ids, skip_special_tokens=True)
return output.strip()
inputs = ["Как тебя зовут?", "Кто такой Колмогоров?"]
for inp in inputs:
conversation = Conversation()
conversation.add_user_message(inp)
prompt = conversation.get_prompt(tokenizer)
output = generate(model, tokenizer, prompt, generation_config)
print(inp)
print(output)
```
[wandb](https://wandb.ai/karina_romanova/vikhr/runs/up2hw5eh?workspace=user-karina_romanova) |