Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
```python
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
|
3 |
+
|
4 |
+
with ('generation_config.json').open('w') as fp:
|
5 |
+
json.dump({
|
6 |
+
"pad_token_id": 0,
|
7 |
+
"bos_token_id": 1,
|
8 |
+
"eos_token_id": 2,
|
9 |
+
"temperature": 0.3,
|
10 |
+
"top_p": 0.9,
|
11 |
+
"top_k": 50,
|
12 |
+
"do_sample": True,
|
13 |
+
"max_new_tokens": 1536,
|
14 |
+
"repetition_penalty": 1.1,
|
15 |
+
"no_repeat_ngram_size": 15,
|
16 |
+
}, fp, indent=4)
|
17 |
+
|
18 |
+
MODEL_NAME = "Vikhrmodels/Vikhr_instruct"
|
19 |
+
TEMPLATE = "<s>{role}\n{content}</s>\n"
|
20 |
+
SYSTEM_PROMPT = "Ты – полезный помощник по имени Вихрь. Ты разговариваешь с людьми и помогаешь им."
|
21 |
+
|
22 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
|
23 |
+
model.to('cuda')
|
24 |
+
model.eval()
|
25 |
+
|
26 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, use_fast=False)
|
27 |
+
generation_config = GenerationConfig.from_pretrained("generation_config.json")
|
28 |
+
|
29 |
+
class Conversation:
|
30 |
+
def __init__(
|
31 |
+
self,
|
32 |
+
message_template=DEFAULT_MESSAGE_TEMPLATE,
|
33 |
+
system_prompt=DEFAULT_SYSTEM_PROMPT,
|
34 |
+
):
|
35 |
+
self.message_template = message_template
|
36 |
+
self.messages = [{
|
37 |
+
"role": "system",
|
38 |
+
"content": system_prompt
|
39 |
+
}]
|
40 |
+
|
41 |
+
def add_user_message(self, message):
|
42 |
+
self.messages.append({
|
43 |
+
"role": "user",
|
44 |
+
"content": message
|
45 |
+
})
|
46 |
+
|
47 |
+
def get_prompt(self, tokenizer):
|
48 |
+
final_text = ""
|
49 |
+
for message in self.messages:
|
50 |
+
message_text = self.message_template.format(**message)
|
51 |
+
final_text += message_text
|
52 |
+
final_text += 'bot'
|
53 |
+
return final_text.strip()
|
54 |
+
|
55 |
+
|
56 |
+
def generate(model, tokenizer, prompt, generation_config):
|
57 |
+
data = tokenizer(prompt, return_tensors="pt")
|
58 |
+
data = {k: v.to(model.device) for k, v in data.items()}
|
59 |
+
output_ids = model.generate(
|
60 |
+
**data,
|
61 |
+
generation_config=generation_config
|
62 |
+
)[0]
|
63 |
+
output_ids = output_ids[len(data["input_ids"][0]):]
|
64 |
+
output = tokenizer.decode(output_ids, skip_special_tokens=True)
|
65 |
+
return output.strip()
|
66 |
+
|
67 |
+
inputs = ["Как тебя зовут?", "Кто такой Колмогоров?"]
|
68 |
+
|
69 |
+
for inp in inputs:
|
70 |
+
conversation = Conversation()
|
71 |
+
conversation.add_user_message(inp)
|
72 |
+
prompt = conversation.get_prompt(tokenizer)
|
73 |
+
|
74 |
+
output = generate(model, tokenizer, prompt, generation_config)
|
75 |
+
print(inp)
|
76 |
+
print(output)
|
77 |
+
```
|