File size: 846 Bytes
6cc79d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
import requests
from PIL import Image
from transformers import Blip2Processor, Blip2ForConditionalGeneration
from typing import Dict, List, Any
import torch

class EndpointHandler():
    def __init__(self, path=""):
        self.processor = Blip2Processor.from_pretrained("Salesforce/blip-image-captioning-large")
        self.model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large")

        self.device = "cuda" if torch.cuda.is_available() else "cpu"
        self.model.to(self.device)

    def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
        image = data.pop("inputs", data)

        processed = self.processor(images=image, return_tensors="pt").to(self.device)

        out = self.model.generate(**processed)

        return self.processor.decode(out[0], skip_special_tokens=True)