File size: 846 Bytes
6cc79d4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 |
import requests
from PIL import Image
from transformers import Blip2Processor, Blip2ForConditionalGeneration
from typing import Dict, List, Any
import torch
class EndpointHandler():
def __init__(self, path=""):
self.processor = Blip2Processor.from_pretrained("Salesforce/blip-image-captioning-large")
self.model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large")
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.model.to(self.device)
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
image = data.pop("inputs", data)
processed = self.processor(images=image, return_tensors="pt").to(self.device)
out = self.model.generate(**processed)
return self.processor.decode(out[0], skip_special_tokens=True) |