Whisper Small Ja - Vick

This model is a fine-tuned version of openai/whisper-small on the Common Voice 13 - whisper_small on ASR_JA dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5735
  • Wer Ortho: 731.1720
  • Wer: 622.0128

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant_with_warmup
  • lr_scheduler_warmup_steps: 50
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Ortho Wer
0.1701 1.13 500 0.4424 480.6484 2104.7685
0.0606 2.26 1000 0.4455 238.1393 1241.4749
0.0334 3.39 1500 0.4821 496.1941 1038.0787
0.0167 4.52 2000 0.4851 614.7604 1104.6160
0.0113 5.66 2500 0.5100 265.9686 457.5270
0.007 6.79 3000 0.5387 338.3004 569.8087
0.0072 7.92 3500 0.5301 213.4515 597.5880
0.005 9.05 4000 0.5735 731.1720 622.0128

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.1
Downloads last month
8
Safetensors
Model size
242M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Vickyee/whisper-small-ja

Finetuned
(2162)
this model

Dataset used to train Vickyee/whisper-small-ja

Evaluation results