distilbart-summarization-base

This model is a fine-tuned version of sshleifer/distilbart-xsum-6-6 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.2566

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAFACTOR and the args are: No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 2.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
2.699 0.1882 500 2.5648
2.5321 0.3764 1000 2.4413
2.4701 0.5645 1500 2.3791
2.4213 0.7527 2000 2.3353
2.404 0.9409 2500 2.3089
2.3352 1.1291 3000 2.2903
2.2998 1.3173 3500 2.2765
2.2999 1.5055 4000 2.2673
2.2665 1.6936 4500 2.2611
2.3412 1.8818 5000 2.2566

Framework versions

  • Transformers 4.48.2
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
5
Safetensors
Model size
230M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for VexPoli/distilbart-summarization-base

Finetuned
(5)
this model