esp-to-lsm-barto-model

This model is a fine-tuned version of vgaraujov/bart-base-spanish on Spanish-Mexican Sign Language (MSL) glosses dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0118
  • Bleu: 82.2615
  • Rouge: {'rouge1': 0.9459411340293693, 'rouge2': 0.8725612535612537, 'rougeL': 0.9409690603514131, 'rougeLsum': 0.9414154570919278}
  • Ter: 7.9703

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1.5e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Bleu Rouge Ter
0.0862 1.0 85 0.0441 48.0832 {'rouge1': 0.7799851292498354, 'rouge2': 0.6094051319051321, 'rougeL': 0.7634691389764923, 'rougeLsum': 0.7637001348324879} 34.4764
0.0323 2.0 170 0.0214 72.9928 {'rouge1': 0.884157046828874, 'rouge2': 0.7702001337442517, 'rougeL': 0.8722237432043938, 'rougeLsum': 0.8720308750417114} 16.6821
0.0198 3.0 255 0.0161 78.5669 {'rouge1': 0.9199390239390244, 'rouge2': 0.82409139009139, 'rougeL': 0.911472143869203, 'rougeLsum': 0.9116302602626135} 12.0482
0.0162 4.0 340 0.0143 79.2390 {'rouge1': 0.9243402735608619, 'rouge2': 0.8460535205535207, 'rougeL': 0.9158039177598002, 'rougeLsum': 0.9159157335039689} 10.7507
0.0137 5.0 425 0.0137 82.3938 {'rouge1': 0.9334139504286565, 'rouge2': 0.8579696784696786, 'rougeL': 0.9274591149591148, 'rougeLsum': 0.927894385026738} 9.6386
0.0108 6.0 510 0.0128 84.1329 {'rouge1': 0.9350887445887449, 'rouge2': 0.8754486161986161, 'rougeL': 0.9311620617944146, 'rougeLsum': 0.9313348612172142} 9.0825
0.0098 7.0 595 0.0129 79.7416 {'rouge1': 0.9399191766838828, 'rouge2': 0.8716096403596405, 'rougeL': 0.9330582073155609, 'rougeLsum': 0.933733249865603} 9.4532
0.009 8.0 680 0.0125 82.9321 {'rouge1': 0.9443956476530007, 'rouge2': 0.8689144281644281, 'rougeL': 0.9390896358543419, 'rougeLsum': 0.9394144809438929} 8.8971
0.0084 9.0 765 0.0122 81.9698 {'rouge1': 0.946071417961124, 'rouge2': 0.8742369759869761, 'rougeL': 0.9409199134199135, 'rougeLsum': 0.9414803284950346} 9.0825
0.0068 10.0 850 0.0121 81.9526 {'rouge1': 0.9484588107970461, 'rouge2': 0.8778730158730159, 'rougeL': 0.9433170783464899, 'rougeLsum': 0.9437279305661661} 8.4337
0.0078 11.0 935 0.0118 82.4911 {'rouge1': 0.9460536750830865, 'rouge2': 0.8745218762718765, 'rougeL': 0.9401823225793814, 'rougeLsum': 0.9404524821583646} 8.8044
0.0063 12.0 1020 0.0120 81.7252 {'rouge1': 0.9465396825396828, 'rouge2': 0.8755185185185186, 'rougeL': 0.9404898777692895, 'rougeLsum': 0.941089275103981} 8.8044
0.0069 13.0 1105 0.0121 81.7348 {'rouge1': 0.9456640068308027, 'rouge2': 0.8716636381048146, 'rougeL': 0.940350419274568, 'rougeLsum': 0.941292909747631} 8.5264
0.0059 14.0 1190 0.0120 82.7243 {'rouge1': 0.9473343307019777, 'rouge2': 0.8731392958892958, 'rougeL': 0.9422385620915033, 'rougeLsum': 0.9425819221628045} 8.4337
0.006 15.0 1275 0.0118 81.2037 {'rouge1': 0.9470927234530175, 'rouge2': 0.8718730158730159, 'rougeL': 0.942004562431033, 'rougeLsum': 0.9425554706731177} 8.3411
0.0055 16.0 1360 0.0119 82.1601 {'rouge1': 0.9435703038791275, 'rouge2': 0.8706992266992267, 'rougeL': 0.938448826500297, 'rougeLsum': 0.9388509252185724} 8.1557
0.0055 17.0 1445 0.0119 82.0465 {'rouge1': 0.9453517120564336, 'rouge2': 0.8718517740429506, 'rougeL': 0.9403101408825094, 'rougeLsum': 0.940731923391366} 8.0630
0.0051 18.0 1530 0.0118 82.1849 {'rouge1': 0.9452478036669215, 'rouge2': 0.8716373626373629, 'rougeL': 0.9402017337237925, 'rougeLsum': 0.9406384008148714} 8.0630
0.0055 19.0 1615 0.0118 82.0985 {'rouge1': 0.9452005559799677, 'rouge2': 0.8723565323565323, 'rougeL': 0.9399868644427471, 'rougeLsum': 0.9405265469824293} 8.0630
0.0052 20.0 1700 0.0118 82.2615 {'rouge1': 0.9459411340293693, 'rouge2': 0.8725612535612537, 'rougeL': 0.9409690603514131, 'rougeLsum': 0.9414154570919278} 7.9703

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
0
Safetensors
Model size
139M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for VaniLara/esp-to-lsm-barto-model

Finetuned
(9)
this model