File size: 1,500 Bytes
58de312 299589a 0a6d4bf 5820683 0a6d4bf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
---
license: apache-2.0
language:
- en
- zh
pipeline_tag: text-generation
---
# Unichat-llama3-Chinese-8B
## 介绍
* 中国联通发布第一版llama3中文模型
* 本模型以Meta-Llama-3-8B-Instruct为基础,增加中文数据进行微调,解决llama3模型中文能力弱的问题
* 基础模型 [**Meta-Llama-3-8B-Instruct**](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct)
## 快速开始
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
model_id = "UnicomLLM/Unichat-llama3-Chinese-8B"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
device_map="auto",
)
messages = [
{"role": "system", "content": "You are a helpful assistant"},
{"role": "user", "content": "Who are you?"},
]
input_ids = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors="pt"
).to(model.device)
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
outputs = model.generate(
input_ids,
max_new_tokens=256,
eos_token_id=terminators,
do_sample=True,
temperature=0.6,
top_p=0.9,
)
response = outputs[0][input_ids.shape[-1]:]
print(tokenizer.decode(response, skip_special_tokens=True))
```
## 资源
更多模型,数据集和训练相关细节请参考:
* Github:[**Unichat-llama3-Chinese**](https://github.com/UnicomAI/Unichat-llama3-Chinese)
|