|
--- |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: no_robots-alpaca |
|
results: [] |
|
license: cc-by-nc-4.0 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) |
|
# no_robots-alpaca |
|
|
|
This lora was trained from scratch with the [Doctor-Shotgun/no-robots-sharegpt](https://huggingface.co/datasets/Doctor-Shotgun/no-robots-sharegpt) dataset on [TheBloke/Llama-2-13B-fp16](https://huggingface.co/TheBloke/Llama-2-13B-fp16). |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.6087 |
|
|
|
## Model description |
|
|
|
The LoRA was trained from the [Doctor-Shotgun/no-robots-sharegpt](https://huggingface.co/datasets/Doctor-Shotgun/no-robots-sharegpt), a ShareGPT converted dataset from the OG [HuggingFaceH4/no_robots](https://huggingface.co/datasets/HuggingFaceH4/no_robots) but with Alpaca prompting. |
|
|
|
## Prompt template: Alpaca |
|
|
|
``` |
|
Below is an instruction that describes a task. Write a response that appropriately completes the request. |
|
|
|
### Instruction: |
|
{prompt} |
|
|
|
### Response: |
|
``` |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.00065 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: constant |
|
- lr_scheduler_warmup_steps: 10 |
|
- num_epochs: 2 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:----:|:---------------:| |
|
| 1.5523 | 0.0 | 1 | 1.5476 | |
|
| 1.2139 | 0.1 | 42 | 1.5008 | |
|
| 1.6348 | 0.2 | 84 | 1.4968 | |
|
| 1.6498 | 0.3 | 126 | 1.4962 | |
|
| 1.5645 | 0.4 | 168 | 1.4983 | |
|
| 1.6487 | 0.5 | 210 | 1.4981 | |
|
| 1.6147 | 0.6 | 252 | 1.4965 | |
|
| 1.3048 | 0.7 | 294 | 1.4973 | |
|
| 1.6205 | 0.8 | 336 | 1.5007 | |
|
| 1.6045 | 0.9 | 378 | 1.5003 | |
|
| 1.5781 | 1.0 | 420 | 1.5013 | |
|
| 1.4807 | 1.09 | 462 | 1.5492 | |
|
| 1.0541 | 1.19 | 504 | 1.5596 | |
|
| 1.2337 | 1.29 | 546 | 1.5789 | |
|
| 0.9719 | 1.39 | 588 | 1.5859 | |
|
| 1.2189 | 1.49 | 630 | 1.5959 | |
|
| 1.2566 | 1.59 | 672 | 1.5968 | |
|
| 0.7049 | 1.69 | 714 | 1.5987 | |
|
| 1.2133 | 1.79 | 756 | 1.5907 | |
|
| 1.0327 | 1.89 | 798 | 1.6087 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.34.1 |
|
- Pytorch 2.0.1+cu117 |
|
- Datasets 2.14.6 |
|
- Tokenizers 0.14.1 |
|
|
|
If you want to support me, you can [here](https://ko-fi.com/undiai). |