File size: 2,277 Bytes
e21320f
eb8a4cd
 
 
6c38756
e21320f
346d601
e21320f
 
eb8a4cd
 
 
 
e21320f
 
 
b8bad48
 
 
346d601
b8bad48
 
 
 
 
346d601
b8bad48
 
 
 
85de0e7
 
346d601
b8bad48
 
 
 
 
 
 
 
 
 
 
 
346d601
b8bad48
 
 
 
 
 
 
 
346d601
b8bad48
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
---
language:
- en
- fr
license: mit
datasets:
- UMA-IA/VELA-Engine-v1
base_model: mistralai/Mistral-7B-v0.1
tags:
- aerospace
- aeronautics
- engineering
- technical-QA
pipeline_tag: text-generation
---


## Model Details

**Model Name:** UMA-IA/CENTAURUS-Engine-v1 
**Authors:**  
- **Youri LALAIN**, Engineering student at French Engineering School ECE  
- **Lilian RAGE**, Engineering student at French Engineering School ECE  

**Base Model:** [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)  
**Fine-tuned Dataset:** [UMA-IA/VELA-Engine-v1](https://huggingface.co/datasets/UMA-IA/UMA_Dataset_Engine_Aero_LLM)  
**License:** Apache 2.0  

## Model Description

# Mistral-7B Fine-tuné sur les moteurs aérospatiaux

UMA-IA/CENTAURUS-Engine-v1 is a specialized fine-tuned version of Mistral-7B designed to provide accurate and detailed answers to technical questions related to aerospace and aeronautical engines. The model leverages the UMA-IA/UMA_Dataset_Engine_Aero_LLM to enhance its understanding of complex engineering principles, propulsion systems, and aerospace technologies.

## Capabilities
- Technical Q&A on aerospace and aeronautical engines
- Analysis and explanations of propulsion system components
- Assistance in understanding aerospace engineering concepts

## Use Cases
- Aerospace research and engineering support
- Educational purposes for students and professionals
- Assisting in aerospace-related R&D projects

## Training Details
This model was fine-tuned on UMA-IA/VELA-Engine-v1, a curated dataset focusing on aerospace engines, propulsion systems, and general aeronautical engineering. The fine-tuning process was performed using supervised learning to adapt Mistral-7B to technical discussions.


## How to Use
You can load the model using Hugging Face's `transformers` library:

```python
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "UMA-IA/CENTAURUS-Engine-v1"

model = AutoModelForCausalLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)

input_text = "Explain the working principle of a turbofan engine."
inputs = tokenizer(input_text, return_tensors="pt")
outputs = model.generate(**inputs)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))