Edit model card

ONNX export of Adapter AdapterHub/roberta-base-pf-boolq for roberta-base

Conversion of AdapterHub/roberta-base-pf-boolq for UKP SQuARE


onnx_path = hf_hub_download(repo_id='UKP-SQuARE/roberta-base-pf-boolq-onnx', filename='model.onnx') # or model_quant.onnx for quantization
onnx_model = InferenceSession(onnx_path, providers=['CPUExecutionProvider'])

context = 'English orthography typically represents vowel sounds with the five conventional vowel letters ⟨a, e, i, o, u⟩, as well as ⟨y⟩, which may also be a consonant depending on context. However, outside of abbreviations, there are a handful of words in English that do not have vowels, either because the vowel sounds are not written with vowel letters or because the words themselves are pronounced without vowel sounds'.
question = 'can there be a word without a vowel'
tokenizer = AutoTokenizer.from_pretrained('UKP-SQuARE/roberta-base-pf-boolq-onnx')

inputs = tokenizer(question, context, padding=True, truncation=True, return_tensors='np')
inputs = {key: np.array(inputs[key], dtype=np.int64) for key in inputs}
outputs = onnx_model.run(input_feed=dict(inputs), output_names=None)

Architecture & Training

The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found here.

Evaluation results

Refer to the paper for more information on results.


If you use this adapter, please cite our paper "What to Pre-Train on? Efficient Intermediate Task Selection":

    title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection",
    author = {Poth, Clifton  and
      Pfeiffer, Jonas  and
      R{"u}ckl{'e}, Andreas  and
      Gurevych, Iryna},
    booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
    month = nov,
    year = "2021",
    address = "Online and Punta Cana, Dominican Republic",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.emnlp-main.827",
    pages = "10585--10605",
Downloads last month
Inference Examples
Inference API (serverless) has been turned off for this model.

Dataset used to train UKP-SQuARE/roberta-base-pf-boolq-onnx

Space using UKP-SQuARE/roberta-base-pf-boolq-onnx 1