Zero-Shot Image Classification
OpenCLIP
Safetensors
clip

Model card for ViT-bigG-14-CLIPA-datacomp1B

A CLIPA-v2 model...

Model Details

Model Usage

With OpenCLIP

import torch
import torch.nn.functional as F
from urllib.request import urlopen
from PIL import Image
from open_clip import create_model_from_pretrained, get_tokenizer

model, preprocess = create_model_from_pretrained('hf-hub:ViT-bigG-14-CLIPA')
tokenizer = get_tokenizer('hf-hub:ViT-bigG-14-CLIPA')

image = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
image = preprocess(image).unsqueeze(0)

text = tokenizer(["a diagram", "a dog", "a cat", "a beignet"], context_length=model.context_length)

with torch.no_grad(), torch.cuda.amp.autocast():
    image_features = model.encode_image(image)
    text_features = model.encode_text(text)
    image_features = F.normalize(image_features, dim=-1)
    text_features = F.normalize(text_features, dim=-1)

    text_probs = (100.0 * image_features @ text_features.T).softmax(dim=-1)

print("Label probs:", text_probs)  # prints: [[0., 0., 0., 1.0]]

Citation

@article{li2023clipav2,
      title={CLIPA-v2: Scaling CLIP Training with 81.1% Zero-shot ImageNet Accuracy within a $10,000 Budget; An Extra $4,000 Unlocks 81.8% Accuracy}, 
      author={Xianhang Li and Zeyu Wang and Cihang Xie},
      journal={arXiv preprint arXiv:2306.15658},
      year={2023},
}
@inproceedings{li2023clipa,
      title={An Inverse Scaling Law for CLIP Training}, 
      author={Xianhang Li and Zeyu Wang and Cihang Xie},
      booktitle={NeurIPS},
      year={2023},
}
Downloads last month
23
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train UCSC-VLAA/ViT-bigG-14-CLIPA-datacomp1B

Collection including UCSC-VLAA/ViT-bigG-14-CLIPA-datacomp1B