File size: 56,888 Bytes
62a2f1c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 |
import sys
import os
import traceback
import json
import pickle
import numpy as np
import scanpy as sc
import pandas as pd
import networkx as nx
from tqdm import tqdm
import logging
import torch
import torch.optim as optim
import torch.nn as nn
from sklearn.metrics import r2_score
from torch.optim.lr_scheduler import StepLR
from torch_geometric.nn import SGConv
from copy import deepcopy
from torch_geometric.data import Data, DataLoader
from multiprocessing import Pool
from torch.nn import Sequential, Linear, ReLU
from scipy.stats import pearsonr
from sklearn.metrics import mean_squared_error as mse
from sklearn.metrics import mean_absolute_error as mae
class MLP(torch.nn.Module):
def __init__(self, sizes, batch_norm=True, last_layer_act="linear"):
super(MLP, self).__init__()
layers = []
for s in range(len(sizes) - 1):
layers = layers + [
torch.nn.Linear(sizes[s], sizes[s + 1]),
torch.nn.BatchNorm1d(sizes[s + 1])
if batch_norm and s < len(sizes) - 1 else None,
torch.nn.ReLU()
]
layers = [l for l in layers if l is not None][:-1]
self.activation = last_layer_act
self.network = torch.nn.Sequential(*layers)
self.relu = torch.nn.ReLU()
def forward(self, x):
return self.network(x)
class GEARS_Model(torch.nn.Module):
"""
GEARS model
"""
def __init__(self, args):
"""
:param args: arguments dictionary
"""
super(GEARS_Model, self).__init__()
self.args = args
self.num_genes = args['num_genes']
self.num_perts = args['num_perts']
hidden_size = args['hidden_size']
self.uncertainty = args['uncertainty']
self.num_layers = args['num_go_gnn_layers']
self.indv_out_hidden_size = args['decoder_hidden_size']
self.num_layers_gene_pos = args['num_gene_gnn_layers']
self.no_perturb = args['no_perturb']
self.pert_emb_lambda = 0.2
# perturbation positional embedding added only to the perturbed genes
self.pert_w = nn.Linear(1, hidden_size)
# gene/globel perturbation embedding dictionary lookup
self.gene_emb = nn.Embedding(self.num_genes, hidden_size, max_norm=True)
self.pert_emb = nn.Embedding(self.num_perts, hidden_size, max_norm=True)
# transformation layer
self.emb_trans = nn.ReLU()
self.pert_base_trans = nn.ReLU()
self.transform = nn.ReLU()
self.emb_trans_v2 = MLP([hidden_size, hidden_size, hidden_size], last_layer_act='ReLU')
self.pert_fuse = MLP([hidden_size, hidden_size, hidden_size], last_layer_act='ReLU')
# gene co-expression GNN
self.G_coexpress = args['G_coexpress'].to(args['device'])
self.G_coexpress_weight = args['G_coexpress_weight'].to(args['device'])
self.emb_pos = nn.Embedding(self.num_genes, hidden_size, max_norm=True)
self.layers_emb_pos = torch.nn.ModuleList()
for i in range(1, self.num_layers_gene_pos + 1):
self.layers_emb_pos.append(SGConv(hidden_size, hidden_size, 1))
### perturbation gene ontology GNN
self.G_sim = args['G_go'].to(args['device'])
self.G_sim_weight = args['G_go_weight'].to(args['device'])
self.sim_layers = torch.nn.ModuleList()
for i in range(1, self.num_layers + 1):
self.sim_layers.append(SGConv(hidden_size, hidden_size, 1))
# decoder shared MLP
self.recovery_w = MLP([hidden_size, hidden_size*2, hidden_size], last_layer_act='linear')
# gene specific decoder
self.indv_w1 = nn.Parameter(torch.rand(self.num_genes,
hidden_size, 1))
self.indv_b1 = nn.Parameter(torch.rand(self.num_genes, 1))
self.act = nn.ReLU()
nn.init.xavier_normal_(self.indv_w1)
nn.init.xavier_normal_(self.indv_b1)
# Cross gene MLP
self.cross_gene_state = MLP([self.num_genes, hidden_size,
hidden_size])
# final gene specific decoder
self.indv_w2 = nn.Parameter(torch.rand(1, self.num_genes,
hidden_size+1))
self.indv_b2 = nn.Parameter(torch.rand(1, self.num_genes))
nn.init.xavier_normal_(self.indv_w2)
nn.init.xavier_normal_(self.indv_b2)
# batchnorms
self.bn_emb = nn.BatchNorm1d(hidden_size)
self.bn_pert_base = nn.BatchNorm1d(hidden_size)
self.bn_pert_base_trans = nn.BatchNorm1d(hidden_size)
# uncertainty mode
if self.uncertainty:
self.uncertainty_w = MLP([hidden_size, hidden_size*2, hidden_size, 1], last_layer_act='linear')
def forward(self, data):
"""
Forward pass of the model
"""
x, pert_idx = data.x, data.pert_idx
if self.no_perturb:
out = x.reshape(-1,1)
out = torch.split(torch.flatten(out), self.num_genes)
return torch.stack(out)
else:
num_graphs = len(data.batch.unique())
## get base gene embeddings
emb = self.gene_emb(torch.LongTensor(list(range(self.num_genes))).repeat(num_graphs, ).to(self.args['device']))
emb = self.bn_emb(emb)
base_emb = self.emb_trans(emb)
pos_emb = self.emb_pos(torch.LongTensor(list(range(self.num_genes))).repeat(num_graphs, ).to(self.args['device']))
for idx, layer in enumerate(self.layers_emb_pos):
pos_emb = layer(pos_emb, self.G_coexpress, self.G_coexpress_weight)
if idx < len(self.layers_emb_pos) - 1:
pos_emb = pos_emb.relu()
base_emb = base_emb + 0.2 * pos_emb
base_emb = self.emb_trans_v2(base_emb)
## get perturbation index and embeddings
pert_index = []
for idx, i in enumerate(pert_idx):
for j in i:
if j != -1:
pert_index.append([idx, j])
pert_index = torch.tensor(pert_index).T
pert_global_emb = self.pert_emb(torch.LongTensor(list(range(self.num_perts))).to(self.args['device']))
## augment global perturbation embedding with GNN
for idx, layer in enumerate(self.sim_layers):
pert_global_emb = layer(pert_global_emb, self.G_sim, self.G_sim_weight)
if idx < self.num_layers - 1:
pert_global_emb = pert_global_emb.relu()
## add global perturbation embedding to each gene in each cell in the batch
base_emb = base_emb.reshape(num_graphs, self.num_genes, -1)
if pert_index.shape[0] != 0:
### in case all samples in the batch are controls, then there is no indexing for pert_index.
pert_track = {}
for i, j in enumerate(pert_index[0]):
if j.item() in pert_track:
pert_track[j.item()] = pert_track[j.item()] + pert_global_emb[pert_index[1][i]]
else:
pert_track[j.item()] = pert_global_emb[pert_index[1][i]]
if len(list(pert_track.values())) > 0:
if len(list(pert_track.values())) == 1:
# circumvent when batch size = 1 with single perturbation and cannot feed into MLP
emb_total = self.pert_fuse(torch.stack(list(pert_track.values()) * 2))
else:
emb_total = self.pert_fuse(torch.stack(list(pert_track.values())))
for idx, j in enumerate(pert_track.keys()):
base_emb[j] = base_emb[j] + emb_total[idx]
base_emb = base_emb.reshape(num_graphs * self.num_genes, -1)
base_emb = self.bn_pert_base(base_emb)
## apply the first MLP
base_emb = self.transform(base_emb)
out = self.recovery_w(base_emb)
out = out.reshape(num_graphs, self.num_genes, -1)
out = out.unsqueeze(-1) * self.indv_w1
w = torch.sum(out, axis = 2)
out = w + self.indv_b1
# Cross gene
cross_gene_embed = self.cross_gene_state(out.reshape(num_graphs, self.num_genes, -1).squeeze(2))
cross_gene_embed = cross_gene_embed.repeat(1, self.num_genes)
cross_gene_embed = cross_gene_embed.reshape([num_graphs,self.num_genes, -1])
cross_gene_out = torch.cat([out, cross_gene_embed], 2)
cross_gene_out = cross_gene_out * self.indv_w2
cross_gene_out = torch.sum(cross_gene_out, axis=2)
out = cross_gene_out + self.indv_b2
out = out.reshape(num_graphs * self.num_genes, -1) + x.reshape(-1,1)
out = torch.split(torch.flatten(out), self.num_genes)
## uncertainty head
if self.uncertainty:
out_logvar = self.uncertainty_w(base_emb)
out_logvar = torch.split(torch.flatten(out_logvar), self.num_genes)
return torch.stack(out), torch.stack(out_logvar)
return torch.stack(out)
class GEARS:
"""
GEARS base model class
"""
def __init__(self, pert_data,
device = 'cuda',
weight_bias_track = True,
proj_name = 'GEARS',
exp_name = 'GEARS'):
self.weight_bias_track = weight_bias_track
if self.weight_bias_track:
import wandb
wandb.init(project=proj_name, name=exp_name)
self.wandb = wandb
else:
self.wandb = None
self.device = device
self.config = None
self.dataloader = pert_data.dataloader
self.adata = pert_data.adata
self.node_map = pert_data.node_map
self.node_map_pert = pert_data.node_map_pert
self.data_path = pert_data.data_path
self.dataset_name = pert_data.dataset_name
self.split = pert_data.split
self.seed = pert_data.seed
self.train_gene_set_size = pert_data.train_gene_set_size
self.set2conditions = pert_data.set2conditions
self.subgroup = pert_data.subgroup
self.gene_list = pert_data.gene_names.values.tolist()
self.pert_list = pert_data.pert_names.tolist()
self.num_genes = len(self.gene_list)
self.num_perts = len(self.pert_list)
self.default_pert_graph = pert_data.default_pert_graph
self.saved_pred = {}
self.saved_logvar_sum = {}
self.ctrl_expression = torch.tensor(
np.mean(self.adata.X[self.adata.obs['condition'].values == 'ctrl'],
axis=0)).reshape(-1, ).to(self.device)
pert_full_id2pert = dict(self.adata.obs[['condition_name', 'condition']].values)
self.dict_filter = {pert_full_id2pert[i]: j for i, j in
self.adata.uns['non_zeros_gene_idx'].items() if
i in pert_full_id2pert}
self.ctrl_adata = self.adata[self.adata.obs['condition'] == 'ctrl']
gene_dict = {g:i for i,g in enumerate(self.gene_list)}
self.pert2gene = {p: gene_dict[pert] for p, pert in
enumerate(self.pert_list) if pert in self.gene_list}
def model_initialize(self, hidden_size = 64,
num_go_gnn_layers = 1,
num_gene_gnn_layers = 1,
decoder_hidden_size = 16,
num_similar_genes_go_graph = 20,
num_similar_genes_co_express_graph = 20,
coexpress_threshold = 0.4,
uncertainty = False,
uncertainty_reg = 1,
direction_lambda = 1e-1,
G_go = None,
G_go_weight = None,
G_coexpress = None,
G_coexpress_weight = None,
no_perturb = False,
**kwargs
):
self.config = {'hidden_size': hidden_size,
'num_go_gnn_layers' : num_go_gnn_layers,
'num_gene_gnn_layers' : num_gene_gnn_layers,
'decoder_hidden_size' : decoder_hidden_size,
'num_similar_genes_go_graph' : num_similar_genes_go_graph,
'num_similar_genes_co_express_graph' : num_similar_genes_co_express_graph,
'coexpress_threshold': coexpress_threshold,
'uncertainty' : uncertainty,
'uncertainty_reg' : uncertainty_reg,
'direction_lambda' : direction_lambda,
'G_go': G_go,
'G_go_weight': G_go_weight,
'G_coexpress': G_coexpress,
'G_coexpress_weight': G_coexpress_weight,
'device': self.device,
'num_genes': self.num_genes,
'num_perts': self.num_perts,
'no_perturb': no_perturb
}
if self.wandb:
self.wandb.config.update(self.config)
if self.config['G_coexpress'] is None:
## calculating co expression similarity graph
edge_list = get_similarity_network(network_type='co-express',
adata=self.adata,
threshold=coexpress_threshold,
k=num_similar_genes_co_express_graph,
data_path=self.data_path,
data_name=self.dataset_name,
split=self.split, seed=self.seed,
train_gene_set_size=self.train_gene_set_size,
set2conditions=self.set2conditions)
sim_network = GeneSimNetwork(edge_list, self.gene_list, node_map = self.node_map)
self.config['G_coexpress'] = sim_network.edge_index
self.config['G_coexpress_weight'] = sim_network.edge_weight
if self.config['G_go'] is None:
## calculating gene ontology similarity graph
edge_list = get_similarity_network(network_type='go',
adata=self.adata,
threshold=coexpress_threshold,
k=num_similar_genes_go_graph,
pert_list=self.pert_list,
data_path=self.data_path,
data_name=self.dataset_name,
split=self.split, seed=self.seed,
train_gene_set_size=self.train_gene_set_size,
set2conditions=self.set2conditions,
default_pert_graph=self.default_pert_graph)
sim_network = GeneSimNetwork(edge_list, self.pert_list, node_map = self.node_map_pert)
self.config['G_go'] = sim_network.edge_index
self.config['G_go_weight'] = sim_network.edge_weight
self.model = GEARS_Model(self.config).to(self.device)
self.best_model = deepcopy(self.model)
def load_pretrained(self, path):
with open(os.path.join(path, 'config.pkl'), 'rb') as f:
config = pickle.load(f)
del config['device'], config['num_genes'], config['num_perts']
self.model_initialize(**config)
self.config = config
state_dict = torch.load(os.path.join(path, 'model.pt'), map_location = torch.device('cpu'))
if next(iter(state_dict))[:7] == 'module.':
# the pretrained model is from data-parallel module
from collections import OrderedDict
new_state_dict = OrderedDict()
for k, v in state_dict.items():
name = k[7:] # remove `module.`
new_state_dict[name] = v
state_dict = new_state_dict
self.model.load_state_dict(state_dict)
self.model = self.model.to(self.device)
self.best_model = self.model
def save_model(self, path):
if not os.path.exists(path):
os.mkdir(path)
if self.config is None:
raise ValueError('No model is initialized...')
with open(os.path.join(path, 'config.pkl'), 'wb') as f:
pickle.dump(self.config, f)
torch.save(self.best_model.state_dict(), os.path.join(path, 'model.pt'))
def train(self, epochs = 20,
lr = 1e-3,
weight_decay = 5e-4
):
"""
Train the model
Parameters
----------
epochs: int
number of epochs to train
lr: float
learning rate
weight_decay: float
weight decay
Returns
-------
None
"""
train_loader = self.dataloader['train_loader']
val_loader = self.dataloader['val_loader']
self.model = self.model.to(self.device)
best_model = deepcopy(self.model)
optimizer = optim.Adam(self.model.parameters(), lr=lr, weight_decay = weight_decay)
scheduler = StepLR(optimizer, step_size=1, gamma=0.5)
min_val = np.inf
print_sys('Start Training...')
for epoch in range(epochs):
self.model.train()
for step, batch in enumerate(train_loader):
batch.to(self.device)
optimizer.zero_grad()
y = batch.y
if self.config['uncertainty']:
pred, logvar = self.model(batch)
loss = uncertainty_loss_fct(pred, logvar, y, batch.pert,
reg = self.config['uncertainty_reg'],
ctrl = self.ctrl_expression,
dict_filter = self.dict_filter,
direction_lambda = self.config['direction_lambda'])
else:
pred = self.model(batch)
loss = loss_fct(pred, y, batch.pert,
ctrl = self.ctrl_expression,
dict_filter = self.dict_filter,
direction_lambda = self.config['direction_lambda'])
loss.backward()
nn.utils.clip_grad_value_(self.model.parameters(), clip_value=1.0)
optimizer.step()
if self.wandb:
self.wandb.log({'training_loss': loss.item()})
if step % 50 == 0:
log = "Epoch {} Step {} Train Loss: {:.4f}"
print_sys(log.format(epoch + 1, step + 1, loss.item()))
scheduler.step()
# Evaluate model performance on train and val set
train_res = evaluate(train_loader, self.model,
self.config['uncertainty'], self.device)
val_res = evaluate(val_loader, self.model,
self.config['uncertainty'], self.device)
train_metrics, _ = compute_metrics(train_res)
val_metrics, _ = compute_metrics(val_res)
# Print epoch performance
log = "Epoch {}: Train Overall MSE: {:.4f} " \
"Validation Overall MSE: {:.4f}. "
print_sys(log.format(epoch + 1, train_metrics['mse'],
val_metrics['mse']))
# Print epoch performance for DE genes
log = "Train Top 20 DE MSE: {:.4f} " \
"Validation Top 20 DE MSE: {:.4f}. "
print_sys(log.format(train_metrics['mse_de'],
val_metrics['mse_de']))
if self.wandb:
metrics = ['mse', 'pearson']
for m in metrics:
self.wandb.log({'train_' + m: train_metrics[m],
'val_'+m: val_metrics[m],
'train_de_' + m: train_metrics[m + '_de'],
'val_de_'+m: val_metrics[m + '_de']})
if val_metrics['mse_de'] < min_val:
min_val = val_metrics['mse_de']
best_model = deepcopy(self.model)
print_sys("Done!")
self.best_model = best_model
if 'test_loader' not in self.dataloader:
print_sys('Done! No test dataloader detected.')
return
# Model testing
test_loader = self.dataloader['test_loader']
print_sys("Start Testing...")
test_res = evaluate(test_loader, self.best_model,
self.config['uncertainty'], self.device)
test_metrics, test_pert_res = compute_metrics(test_res)
log = "Best performing model: Test Top 20 DE MSE: {:.4f}"
print_sys(log.format(test_metrics['mse_de']))
if self.wandb:
metrics = ['mse', 'pearson']
for m in metrics:
self.wandb.log({'test_' + m: test_metrics[m],
'test_de_'+m: test_metrics[m + '_de']
})
print_sys('Done!')
self.test_metrics = test_metrics
def np_pearson_cor(x, y):
xv = x - x.mean(axis=0)
yv = y - y.mean(axis=0)
xvss = (xv * xv).sum(axis=0)
yvss = (yv * yv).sum(axis=0)
result = np.matmul(xv.transpose(), yv) / np.sqrt(np.outer(xvss, yvss))
# bound the values to -1 to 1 in the event of precision issues
return np.maximum(np.minimum(result, 1.0), -1.0)
class GeneSimNetwork():
"""
GeneSimNetwork class
Args:
edge_list (pd.DataFrame): edge list of the network
gene_list (list): list of gene names
node_map (dict): dictionary mapping gene names to node indices
Attributes:
edge_index (torch.Tensor): edge index of the network
edge_weight (torch.Tensor): edge weight of the network
G (nx.DiGraph): networkx graph object
"""
def __init__(self, edge_list, gene_list, node_map):
"""
Initialize GeneSimNetwork class
"""
self.edge_list = edge_list
self.G = nx.from_pandas_edgelist(self.edge_list, source='source',
target='target', edge_attr=['importance'],
create_using=nx.DiGraph())
self.gene_list = gene_list
for n in self.gene_list:
if n not in self.G.nodes():
self.G.add_node(n)
edge_index_ = [(node_map[e[0]], node_map[e[1]]) for e in
self.G.edges]
self.edge_index = torch.tensor(edge_index_, dtype=torch.long).T
#self.edge_weight = torch.Tensor(self.edge_list['importance'].values)
edge_attr = nx.get_edge_attributes(self.G, 'importance')
importance = np.array([edge_attr[e] for e in self.G.edges])
self.edge_weight = torch.Tensor(importance)
def get_GO_edge_list(args):
"""
Get gene ontology edge list
"""
g1, gene2go = args
edge_list = []
for g2 in gene2go.keys():
score = len(gene2go[g1].intersection(gene2go[g2])) / len(
gene2go[g1].union(gene2go[g2]))
if score > 0.1:
edge_list.append((g1, g2, score))
return edge_list
def make_GO(data_path, pert_list, data_name, num_workers=25, save=True):
"""
Creates Gene Ontology graph from a custom set of genes
"""
fname = './data/go_essential_' + data_name + '.csv'
if os.path.exists(fname):
return pd.read_csv(fname)
with open(os.path.join(data_path, 'gene2go_all.pkl'), 'rb') as f:
gene2go = pickle.load(f)
gene2go = {i: gene2go[i] for i in pert_list}
print('Creating custom GO graph, this can take a few minutes')
with Pool(num_workers) as p:
all_edge_list = list(
tqdm(p.imap(get_GO_edge_list, ((g, gene2go) for g in gene2go.keys())),
total=len(gene2go.keys())))
edge_list = []
for i in all_edge_list:
edge_list = edge_list + i
df_edge_list = pd.DataFrame(edge_list).rename(
columns={0: 'source', 1: 'target', 2: 'importance'})
if save:
print('Saving edge_list to file')
df_edge_list.to_csv(fname, index=False)
return df_edge_list
def get_similarity_network(network_type, adata, threshold, k,
data_path, data_name, split, seed, train_gene_set_size,
set2conditions, default_pert_graph=True, pert_list=None):
if network_type == 'co-express':
df_out = get_coexpression_network_from_train(adata, threshold, k,
data_path, data_name, split,
seed, train_gene_set_size,
set2conditions)
elif network_type == 'go':
if default_pert_graph:
server_path = 'https://dataverse.harvard.edu/api/access/datafile/6934319'
#tar_data_download_wrapper(server_path,
#os.path.join(data_path, 'go_essential_all'),
#data_path)
df_jaccard = pd.read_csv(os.path.join(data_path,
'go_essential_all/go_essential_all.csv'))
else:
df_jaccard = make_GO(data_path, pert_list, data_name)
df_out = df_jaccard.groupby('target').apply(lambda x: x.nlargest(k + 1,
['importance'])).reset_index(drop = True)
return df_out
def get_coexpression_network_from_train(adata, threshold, k, data_path,
data_name, split, seed, train_gene_set_size,
set2conditions):
"""
Infer co-expression network from training data
Args:
adata (anndata.AnnData): anndata object
threshold (float): threshold for co-expression
k (int): number of edges to keep
data_path (str): path to data
data_name (str): name of dataset
split (str): split of dataset
seed (int): seed for random number generator
train_gene_set_size (int): size of training gene set
set2conditions (dict): dictionary of perturbations to conditions
"""
fname = os.path.join(os.path.join(data_path, data_name), split + '_' +
str(seed) + '_' + str(train_gene_set_size) + '_' +
str(threshold) + '_' + str(k) +
'_co_expression_network.csv')
if os.path.exists(fname):
return pd.read_csv(fname)
else:
gene_list = [f for f in adata.var.gene_name.values]
idx2gene = dict(zip(range(len(gene_list)), gene_list))
X = adata.X
train_perts = set2conditions['train']
X_tr = X[np.isin(adata.obs.condition, [i for i in train_perts if 'ctrl' in i])]
gene_list = adata.var['gene_name'].values
X_tr = X_tr.toarray()
out = np_pearson_cor(X_tr, X_tr)
out[np.isnan(out)] = 0
out = np.abs(out)
out_sort_idx = np.argsort(out)[:, -(k + 1):]
out_sort_val = np.sort(out)[:, -(k + 1):]
df_g = []
for i in range(out_sort_idx.shape[0]):
target = idx2gene[i]
for j in range(out_sort_idx.shape[1]):
df_g.append((idx2gene[out_sort_idx[i, j]], target, out_sort_val[i, j]))
df_g = [i for i in df_g if i[2] > threshold]
df_co_expression = pd.DataFrame(df_g).rename(columns = {0: 'source',
1: 'target',
2: 'importance'})
df_co_expression.to_csv(fname, index = False)
return df_co_expression
def uncertainty_loss_fct(pred, logvar, y, perts, reg = 0.1, ctrl = None,
direction_lambda = 1e-3, dict_filter = None):
"""
Uncertainty loss function
Args:
pred (torch.tensor): predicted values
logvar (torch.tensor): log variance
y (torch.tensor): true values
perts (list): list of perturbations
reg (float): regularization parameter
ctrl (str): control perturbation
direction_lambda (float): direction loss weight hyperparameter
dict_filter (dict): dictionary of perturbations to conditions
"""
gamma = 2
perts = np.array(perts)
losses = torch.tensor(0.0, requires_grad=True).to(pred.device)
for p in set(perts):
if p!= 'ctrl':
retain_idx = dict_filter[p]
pred_p = pred[np.where(perts==p)[0]][:, retain_idx]
y_p = y[np.where(perts==p)[0]][:, retain_idx]
logvar_p = logvar[np.where(perts==p)[0]][:, retain_idx]
else:
pred_p = pred[np.where(perts==p)[0]]
y_p = y[np.where(perts==p)[0]]
logvar_p = logvar[np.where(perts==p)[0]]
# uncertainty based loss
losses += torch.sum((pred_p - y_p)**(2 + gamma) + reg * torch.exp(
-logvar_p) * (pred_p - y_p)**(2 + gamma))/pred_p.shape[0]/pred_p.shape[1]
# direction loss
if p!= 'ctrl':
losses += torch.sum(direction_lambda *
(torch.sign(y_p - ctrl[retain_idx]) -
torch.sign(pred_p - ctrl[retain_idx]))**2)/\
pred_p.shape[0]/pred_p.shape[1]
else:
losses += torch.sum(direction_lambda *
(torch.sign(y_p - ctrl) -
torch.sign(pred_p - ctrl))**2)/\
pred_p.shape[0]/pred_p.shape[1]
return losses/(len(set(perts)))
def loss_fct(pred, y, perts, ctrl = None, direction_lambda = 1e-3, dict_filter = None):
"""
Main MSE Loss function, includes direction loss
Args:
pred (torch.tensor): predicted values
y (torch.tensor): true values
perts (list): list of perturbations
ctrl (str): control perturbation
direction_lambda (float): direction loss weight hyperparameter
dict_filter (dict): dictionary of perturbations to conditions
"""
gamma = 2
mse_p = torch.nn.MSELoss()
perts = np.array(perts)
losses = torch.tensor(0.0, requires_grad=True).to(pred.device)
for p in set(perts):
pert_idx = np.where(perts == p)[0]
# during training, we remove the all zero genes into calculation of loss.
# this gives a cleaner direction loss. empirically, the performance stays the same.
if p!= 'ctrl':
retain_idx = dict_filter[p]
pred_p = pred[pert_idx][:, retain_idx]
y_p = y[pert_idx][:, retain_idx]
else:
pred_p = pred[pert_idx]
y_p = y[pert_idx]
losses = losses + torch.sum((pred_p - y_p)**(2 + gamma))/pred_p.shape[0]/pred_p.shape[1]
## direction loss
if (p!= 'ctrl'):
losses = losses + torch.sum(direction_lambda *
(torch.sign(y_p - ctrl[retain_idx]) -
torch.sign(pred_p - ctrl[retain_idx]))**2)/\
pred_p.shape[0]/pred_p.shape[1]
else:
losses = losses + torch.sum(direction_lambda * (torch.sign(y_p - ctrl) -
torch.sign(pred_p - ctrl))**2)/\
pred_p.shape[0]/pred_p.shape[1]
return losses/(len(set(perts)))
def evaluate(loader, model, uncertainty, device):
"""
Run model in inference mode using a given data loader
"""
model.eval()
model.to(device)
pert_cat = []
pred = []
truth = []
pred_de = []
truth_de = []
results = {}
logvar = []
for itr, batch in enumerate(loader):
batch.to(device)
pert_cat.extend(batch.pert)
with torch.no_grad():
if uncertainty:
p, unc = model(batch)
logvar.extend(unc.cpu())
else:
p = model(batch)
t = batch.y
pred.extend(p.cpu())
truth.extend(t.cpu())
# Differentially expressed genes
for itr, de_idx in enumerate(batch.de_idx):
pred_de.append(p[itr, de_idx])
truth_de.append(t[itr, de_idx])
# all genes
results['pert_cat'] = np.array(pert_cat)
pred = torch.stack(pred)
truth = torch.stack(truth)
results['pred']= pred.detach().cpu().numpy()
results['truth']= truth.detach().cpu().numpy()
pred_de = torch.stack(pred_de)
truth_de = torch.stack(truth_de)
results['pred_de']= pred_de.detach().cpu().numpy()
results['truth_de']= truth_de.detach().cpu().numpy()
if uncertainty:
results['logvar'] = torch.stack(logvar).detach().cpu().numpy()
return results
def compute_metrics(results):
"""
Given results from a model run and the ground truth, compute metrics
"""
metrics = {}
metrics_pert = {}
metric2fct = {
'mse': mse,
'pearson': pearsonr
}
for m in metric2fct.keys():
metrics[m] = []
metrics[m + '_de'] = []
for pert in np.unique(results['pert_cat']):
metrics_pert[pert] = {}
p_idx = np.where(results['pert_cat'] == pert)[0]
for m, fct in metric2fct.items():
if m == 'pearson':
val = fct(results['pred'][p_idx].mean(0), results['truth'][p_idx].mean(0))[0]
if np.isnan(val):
val = 0
else:
val = fct(results['pred'][p_idx].mean(0), results['truth'][p_idx].mean(0))
metrics_pert[pert][m] = val
metrics[m].append(metrics_pert[pert][m])
if pert != 'ctrl':
for m, fct in metric2fct.items():
if m == 'pearson':
val = fct(results['pred_de'][p_idx].mean(0), results['truth_de'][p_idx].mean(0))[0]
if np.isnan(val):
val = 0
else:
val = fct(results['pred_de'][p_idx].mean(0), results['truth_de'][p_idx].mean(0))
metrics_pert[pert][m + '_de'] = val
metrics[m + '_de'].append(metrics_pert[pert][m + '_de'])
else:
for m, fct in metric2fct.items():
metrics_pert[pert][m + '_de'] = 0
for m in metric2fct.keys():
metrics[m] = np.mean(metrics[m])
metrics[m + '_de'] = np.mean(metrics[m + '_de'])
return metrics, metrics_pert
def filter_pert_in_go(condition, pert_names):
"""
Filter perturbations in GO graph
Args:
condition (str): whether condition is 'ctrl' or not
pert_names (list): list of perturbations
"""
if condition == 'ctrl':
return True
else:
cond1 = condition.split('+')[0]
cond2 = condition.split('+')[1]
num_ctrl = (cond1 == 'ctrl') + (cond2 == 'ctrl')
num_in_perts = (cond1 in pert_names) + (cond2 in pert_names)
if num_ctrl + num_in_perts == 2:
return True
else:
return False
class PertData:
def __init__(self, data_path,
gene_set_path=None,
default_pert_graph=True):
# Dataset/Dataloader attributes
self.data_path = data_path
self.default_pert_graph = default_pert_graph
self.gene_set_path = gene_set_path
self.dataset_name = None
self.dataset_path = None
self.adata = None
self.dataset_processed = None
self.ctrl_adata = None
self.gene_names = []
self.node_map = {}
# Split attributes
self.split = None
self.seed = None
self.subgroup = None
self.train_gene_set_size = None
if not os.path.exists(self.data_path):
os.mkdir(self.data_path)
server_path = 'https://dataverse.harvard.edu/api/access/datafile/6153417'
with open(os.path.join(self.data_path, 'gene2go_all.pkl'), 'rb') as f:
self.gene2go = pickle.load(f)
def set_pert_genes(self):
"""
Set the list of genes that can be perturbed and are to be included in
perturbation graph
"""
if self.gene_set_path is not None:
# If gene set specified for perturbation graph, use that
path_ = self.gene_set_path
self.default_pert_graph = False
with open(path_, 'rb') as f:
essential_genes = pickle.load(f)
elif self.default_pert_graph is False:
# Use a smaller perturbation graph
all_pert_genes = get_genes_from_perts(self.adata.obs['condition'])
essential_genes = list(self.adata.var['gene_name'].values)
essential_genes += all_pert_genes
else:
# Otherwise, use a large set of genes to create perturbation graph
server_path = 'https://dataverse.harvard.edu/api/access/datafile/6934320'
path_ = os.path.join(self.data_path,
'essential_all_data_pert_genes.pkl')
with open(path_, 'rb') as f:
essential_genes = pickle.load(f)
gene2go = {i: self.gene2go[i] for i in essential_genes if i in self.gene2go}
self.pert_names = np.unique(list(gene2go.keys()))
self.node_map_pert = {x: it for it, x in enumerate(self.pert_names)}
def load(self, data_name = None, data_path = None):
if data_name in ['norman', 'adamson', 'dixit',
'replogle_k562_essential',
'replogle_rpe1_essential']:
data_path = os.path.join(self.data_path, data_name)
#zip_data_download_wrapper(url, data_path, self.data_path)
self.dataset_name = data_path.split('/')[-1]
self.dataset_path = data_path
adata_path = os.path.join(data_path, 'perturb_processed.h5ad')
self.adata = sc.read_h5ad(adata_path)
elif os.path.exists(data_path):
adata_path = os.path.join(data_path, 'perturb_processed.h5ad')
self.adata = sc.read_h5ad(adata_path)
self.dataset_name = data_path.split('/')[-1]
self.dataset_path = data_path
else:
raise ValueError("data attribute is either norman, adamson, dixit "
"replogle_k562 or replogle_rpe1 "
"or a path to an h5ad file")
self.set_pert_genes()
print_sys('These perturbations are not in the GO graph and their '
'perturbation can thus not be predicted')
not_in_go_pert = np.array(self.adata.obs[
self.adata.obs.condition.apply(
lambda x:not filter_pert_in_go(x,
self.pert_names))].condition.unique())
print_sys(not_in_go_pert)
filter_go = self.adata.obs[self.adata.obs.condition.apply(
lambda x: filter_pert_in_go(x, self.pert_names))]
self.adata = self.adata[filter_go.index.values, :]
pyg_path = os.path.join(data_path, 'data_pyg')
if not os.path.exists(pyg_path):
os.mkdir(pyg_path)
dataset_fname = os.path.join(pyg_path, 'cell_graphs.pkl')
if os.path.isfile(dataset_fname):
print_sys("Local copy of pyg dataset is detected. Loading...")
self.dataset_processed = pickle.load(open(dataset_fname, "rb"))
print_sys("Done!")
else:
self.ctrl_adata = self.adata[self.adata.obs['condition'] == 'ctrl']
self.gene_names = self.adata.var.gene_name
print_sys("Creating pyg object for each cell in the data...")
self.create_dataset_file()
print_sys("Saving new dataset pyg object at " + dataset_fname)
pickle.dump(self.dataset_processed, open(dataset_fname, "wb"))
print_sys("Done!")
def prepare_split(self, split = 'simulation',
seed = 1,
train_gene_set_size = 0.75,
combo_seen2_train_frac = 0.75,
combo_single_split_test_set_fraction = 0.1,
test_perts = None,
only_test_set_perts = False,
test_pert_genes = None,
split_dict_path=None):
"""
Prepare splits for training and testing
Parameters
----------
split: str
Type of split to use. Currently, we support 'simulation',
'simulation_single', 'combo_seen0', 'combo_seen1', 'combo_seen2',
'single', 'no_test', 'no_split', 'custom'
seed: int
Random seed
train_gene_set_size: float
Fraction of genes to use for training
combo_seen2_train_frac: float
Fraction of combo seen2 perturbations to use for training
combo_single_split_test_set_fraction: float
Fraction of combo single perturbations to use for testing
test_perts: list
List of perturbations to use for testing
only_test_set_perts: bool
If True, only use test set perturbations for testing
test_pert_genes: list
List of genes to use for testing
split_dict_path: str
Path to dictionary used for custom split. Sample format:
{'train': [X, Y], 'val': [P, Q], 'test': [Z]}
Returns
-------
None
"""
available_splits = ['simulation', 'simulation_single', 'combo_seen0',
'combo_seen1', 'combo_seen2', 'single', 'no_test',
'no_split', 'custom']
if split not in available_splits:
raise ValueError('currently, we only support ' + ','.join(available_splits))
self.split = split
self.seed = seed
self.subgroup = None
if split == 'custom':
try:
with open(split_dict_path, 'rb') as f:
self.set2conditions = pickle.load(f)
except:
raise ValueError('Please set split_dict_path for custom split')
return
self.train_gene_set_size = train_gene_set_size
split_folder = os.path.join(self.dataset_path, 'splits')
if not os.path.exists(split_folder):
os.mkdir(split_folder)
split_file = self.dataset_name + '_' + split + '_' + str(seed) + '_' \
+ str(train_gene_set_size) + '.pkl'
split_path = os.path.join(split_folder, split_file)
if test_perts:
split_path = split_path[:-4] + '_' + test_perts + '.pkl'
if os.path.exists(split_path):
print('here1')
print_sys("Local copy of split is detected. Loading...")
set2conditions = pickle.load(open(split_path, "rb"))
if split == 'simulation':
subgroup_path = split_path[:-4] + '_subgroup.pkl'
subgroup = pickle.load(open(subgroup_path, "rb"))
self.subgroup = subgroup
else:
print_sys("Creating new splits....")
if test_perts:
test_perts = test_perts.split('_')
if split in ['simulation', 'simulation_single']:
# simulation split
DS = DataSplitter(self.adata, split_type=split)
adata, subgroup = DS.split_data(train_gene_set_size = train_gene_set_size,
combo_seen2_train_frac = combo_seen2_train_frac,
seed=seed,
test_perts = test_perts,
only_test_set_perts = only_test_set_perts
)
subgroup_path = split_path[:-4] + '_subgroup.pkl'
pickle.dump(subgroup, open(subgroup_path, "wb"))
self.subgroup = subgroup
elif split[:5] == 'combo':
# combo perturbation
split_type = 'combo'
seen = int(split[-1])
if test_pert_genes:
test_pert_genes = test_pert_genes.split('_')
DS = DataSplitter(self.adata, split_type=split_type, seen=int(seen))
adata = DS.split_data(test_size=combo_single_split_test_set_fraction,
test_perts=test_perts,
test_pert_genes=test_pert_genes,
seed=seed)
elif split == 'single':
# single perturbation
DS = DataSplitter(self.adata, split_type=split)
adata = DS.split_data(test_size=combo_single_split_test_set_fraction,
seed=seed)
elif split == 'no_test':
# no test set
DS = DataSplitter(self.adata, split_type=split)
adata = DS.split_data(seed=seed)
elif split == 'no_split':
# no split
adata = self.adata
adata.obs['split'] = 'test'
set2conditions = dict(adata.obs.groupby('split').agg({'condition':
lambda x: x}).condition)
set2conditions = {i: j.unique().tolist() for i,j in set2conditions.items()}
pickle.dump(set2conditions, open(split_path, "wb"))
print_sys("Saving new splits at " + split_path)
self.set2conditions = set2conditions
if split == 'simulation':
print_sys('Simulation split test composition:')
for i,j in subgroup['test_subgroup'].items():
print_sys(i + ':' + str(len(j)))
print_sys("Done!")
def get_dataloader(self, batch_size, test_batch_size = None):
"""
Get dataloaders for training and testing
Parameters
----------
batch_size: int
Batch size for training
test_batch_size: int
Batch size for testing
Returns
-------
dict
Dictionary of dataloaders
"""
if test_batch_size is None:
test_batch_size = batch_size
self.node_map = {x: it for it, x in enumerate(self.adata.var.gene_name)}
self.gene_names = self.adata.var.gene_name
# Create cell graphs
cell_graphs = {}
if self.split == 'no_split':
i = 'test'
cell_graphs[i] = []
for p in self.set2conditions[i]:
if p != 'ctrl':
cell_graphs[i].extend(self.dataset_processed[p])
print_sys("Creating dataloaders....")
# Set up dataloaders
test_loader = DataLoader(cell_graphs['test'],
batch_size=batch_size, shuffle=False)
print_sys("Dataloaders created...")
return {'test_loader': test_loader}
else:
if self.split =='no_test':
splits = ['train','val']
else:
splits = ['train','val','test']
for i in splits:
cell_graphs[i] = []
for p in self.set2conditions[i]:
cell_graphs[i].extend(self.dataset_processed[p])
print_sys("Creating dataloaders....")
# Set up dataloaders
train_loader = DataLoader(cell_graphs['train'],
batch_size=batch_size, shuffle=True, drop_last = True)
val_loader = DataLoader(cell_graphs['val'],
batch_size=batch_size, shuffle=True)
if self.split !='no_test':
test_loader = DataLoader(cell_graphs['test'],
batch_size=batch_size, shuffle=False)
self.dataloader = {'train_loader': train_loader,
'val_loader': val_loader,
'test_loader': test_loader}
else:
self.dataloader = {'train_loader': train_loader,
'val_loader': val_loader}
print_sys("Done!")
def get_pert_idx(self, pert_category):
"""
Get perturbation index for a given perturbation category
Parameters
----------
pert_category: str
Perturbation category
Returns
-------
list
List of perturbation indices
"""
try:
pert_idx = [np.where(p == self.pert_names)[0][0]
for p in pert_category.split('+')
if p != 'ctrl']
except:
print(pert_category)
pert_idx = None
return pert_idx
def create_cell_graph(self, X, y, de_idx, pert, pert_idx=None):
"""
Create a cell graph from a given cell
Parameters
----------
X: np.ndarray
Gene expression matrix
y: np.ndarray
Label vector
de_idx: np.ndarray
DE gene indices
pert: str
Perturbation category
pert_idx: list
List of perturbation indices
Returns
-------
torch_geometric.data.Data
Cell graph to be used in dataloader
"""
feature_mat = torch.Tensor(X).T
if pert_idx is None:
pert_idx = [-1]
return Data(x=feature_mat, pert_idx=pert_idx,
y=torch.Tensor(y), de_idx=de_idx, pert=pert)
def create_cell_graph_dataset(self, split_adata, pert_category,
num_samples=1):
"""
Combine cell graphs to create a dataset of cell graphs
Parameters
----------
split_adata: anndata.AnnData
Annotated data matrix
pert_category: str
Perturbation category
num_samples: int
Number of samples to create per perturbed cell (i.e. number of
control cells to map to each perturbed cell)
Returns
-------
list
List of cell graphs
"""
num_de_genes = 20
adata_ = split_adata[split_adata.obs['condition'] == pert_category]
if 'rank_genes_groups_cov_all' in adata_.uns:
de_genes = adata_.uns['rank_genes_groups_cov_all']
de = True
else:
de = False
num_de_genes = 1
Xs = []
ys = []
# When considering a non-control perturbation
if pert_category != 'ctrl':
# Get the indices of applied perturbation
pert_idx = self.get_pert_idx(pert_category)
# Store list of genes that are most differentially expressed for testing
pert_de_category = adata_.obs['condition_name'][0]
if de:
de_idx = np.where(adata_.var_names.isin(
np.array(de_genes[pert_de_category][:num_de_genes])))[0]
else:
de_idx = [-1] * num_de_genes
for cell_z in adata_.X:
# Use samples from control as basal expression
ctrl_samples = self.ctrl_adata[np.random.randint(0,
len(self.ctrl_adata), num_samples), :]
for c in ctrl_samples.X:
Xs.append(c)
ys.append(cell_z)
# When considering a control perturbation
else:
pert_idx = None
de_idx = [-1] * num_de_genes
for cell_z in adata_.X:
Xs.append(cell_z)
ys.append(cell_z)
# Create cell graphs
cell_graphs = []
for X, y in zip(Xs, ys):
cell_graphs.append(self.create_cell_graph(X.toarray(),
y.toarray(), de_idx, pert_category, pert_idx))
return cell_graphs
def create_dataset_file(self):
"""
Create dataset file for each perturbation condition
"""
print_sys("Creating dataset file...")
self.dataset_processed = {}
for p in tqdm(self.adata.obs['condition'].unique()):
self.dataset_processed[p] = self.create_cell_graph_dataset(self.adata, p)
print_sys("Done!")
def main(data_path='./data', out_dir='./saved_models', device='cuda:0'):
os.makedirs(data_path, exist_ok=True)
os.makedirs(out_dir, exist_ok=True)
os.environ["WANDB_SILENT"] = "true"
os.environ["WANDB_ERROR_REPORTING"] = "false"
print_sys("=== data loading ===")
pert_data = PertData(data_path)
pert_data.load(data_name='norman')
pert_data.prepare_split(split='simulation', seed=1)
pert_data.get_dataloader(batch_size=32, test_batch_size=128)
print_sys("\n=== model traing ===")
gears_model = GEARS(
pert_data,
device=device,
weight_bias_track=True,
proj_name='GEARS',
exp_name='gears_norman'
)
gears_model.model_initialize(hidden_size = 64)
gears_model.train(epochs=args.epochs, lr=1e-3)
gears_model.save_model(os.path.join(out_dir, 'norman_full_model'))
print_sys(f"model saved to {out_dir}")
gears_model.load_pretrained(os.path.join(out_dir, 'norman_full_model'))
final_infos = {
"Gears":{
"means":{
"Test Top 20 DE MSE": float(gears_model.test_metrics['mse_de'].item())
}
}
}
with open(os.path.join(out_dir, 'final_info.json'), 'w') as f:
json.dump(final_infos, f, indent=4)
print_sys("final info saved.")
def print_sys(s):
"""system print
Args:
s (str): the string to print
"""
print(s, flush = True, file = sys.stderr)
log_path = os.path.join(args.out_dir, args.log_file)
logging.basicConfig(
filename=log_path,
level=logging.INFO,
)
logger = logging.getLogger()
logger.info(s)
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--data_path', type=str, default='./data')
parser.add_argument('--out_dir', type=str, default='run_1')
parser.add_argument('--device', type=str, default='cuda:0')
parser.add_argument('--log_file', type=str, default="training_ds.log")
parser.add_argument('--epochs', type=int, default=20)
args = parser.parse_args()
try:
main(
data_path=args.data_path,
out_dir=args.out_dir,
device=args.device
)
except Exception as e:
print("Origin error in main process:", flush=True)
traceback.print_exc(file=open(os.path.join(args.out_dir, "traceback.log"), "w"))
raise
|