File size: 6,897 Bytes
62a2f1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import torch
import torch.nn as nn
import torch.nn.functional as F
import math

class NormalizedMultiScaleAttention(nn.Module):
    """
    Normalized Multi-Scale Attention (Normalized-MSA) module
    Enhances multi-scale feature representation by balancing computational efficiency with representation strength.
    """
    def __init__(self, in_channels, scales=[1, 2, 4]):
        super(NormalizedMultiScaleAttention, self).__init__()
        self.scales = scales
        self.in_channels = in_channels
        
        # Spatial attention convolutions for each scale
        self.spatial_convs = nn.ModuleList([
            nn.Sequential(
                nn.Conv2d(in_channels, in_channels, kernel_size=3, padding=1, bias=False),
                nn.BatchNorm2d(in_channels),
                nn.Sigmoid()
            ) for _ in range(len(scales))
        ])
        
        # Add edge-aware convolution to better preserve boundary information
        self.edge_conv = nn.Sequential(
            nn.Conv2d(in_channels, in_channels, kernel_size=3, padding=1, bias=False),
            nn.BatchNorm2d(in_channels),
            nn.ReLU(inplace=True)
        )
        
        # Scale weights for combining features
        self.scale_weights = nn.Parameter(torch.ones(len(scales)) / len(scales))
        
        self._init_weights()
        
    def _init_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
            elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)
    
    def forward(self, x):
        batch_size, channels, height, width = x.size()
        multi_scale_features = []
        
        # Extract edge information
        edge_features = self.edge_conv(x)
        
        for i, scale in enumerate(self.scales):
            # Generate multi-scale feature using pooling
            if scale == 1:
                x_s = x
            else:
                # Downsample using average pooling
                x_s = F.avg_pool2d(x, kernel_size=scale, stride=scale)
            
            # Compute spatial attention
            spatial_attn = self.spatial_convs[i](x_s)
            
            # Compute channel attention with normalization factor
            # Reshape for matrix multiplication
            x_flat = x_s.view(batch_size, channels, -1)  # B x C x HW
            x_t = x_flat.transpose(1, 2)  # B x HW x C
            
            # Normalized channel attention
            norm_factor = math.sqrt(x_flat.size(2))  # sqrt(HW) for normalization
            channel_attn = torch.bmm(x_flat, x_t) / norm_factor  # B x C x C
            channel_attn = F.softmax(channel_attn, dim=2)  # Softmax along the last dimension
            
            # Apply attention
            attended = torch.bmm(channel_attn, x_flat)  # B x C x HW
            attended = attended.view(batch_size, channels, *x_s.size()[2:])  # B x C x H' x W'
            
            # Apply spatial attention
            attended = attended * spatial_attn
            
            # Upsample back to original size if needed
            if scale != 1:
                attended = F.interpolate(attended, size=(height, width), mode='bilinear', align_corners=False)
            
            multi_scale_features.append(attended)
        
        # Combine multi-scale features with learnable weights
        weighted_features = []
        for i, feature in enumerate(multi_scale_features):
            weighted_features.append(feature * self.scale_weights[i])
        
        # Sum weighted features
        output = torch.stack(weighted_features, dim=0).sum(dim=0)
        
        # Add edge features with a small weight to preserve boundary information
        output = output + 0.1 * edge_features
        
        return output

class EntropyOptimizedGating(nn.Module):
    """
    Entropy-Optimized Gating (EOG) module
    Feature redundancy is adaptively suppressed using a normalized entropy function.
    """
    def __init__(self, channels, beta=0.3, epsilon=1e-5):  # Reduced beta threshold to be less aggressive
        super(EntropyOptimizedGating, self).__init__()
        self.channels = channels
        self.beta = nn.Parameter(torch.tensor([beta]))  # Learnable threshold
        self.epsilon = epsilon
        # Add a small residual connection to preserve some original features
        self.residual_weight = nn.Parameter(torch.tensor([0.2]))
        
    def forward(self, x):
        batch_size, channels, height, width = x.size()
        
        # Calculate normalized entropy for each channel
        entropies = []
        gates = []
        
        for c in range(channels):
            # Extract channel
            channel = x[:, c, :, :]  # B x H x W
            
            # Calculate normalized probability distribution
            abs_channel = torch.abs(channel)
            sum_abs = torch.sum(abs_channel, dim=(1, 2), keepdim=True) + self.epsilon
            norm_prob = abs_channel / sum_abs  # B x H x W
            
            # Calculate entropy
            # Add epsilon to avoid log(0)
            log_prob = torch.log(norm_prob + self.epsilon)
            entropy = -torch.sum(norm_prob * log_prob, dim=(1, 2))  # B
            
            # Normalize entropy to [0, 1] range
            max_entropy = math.log(height * width)  # Maximum possible entropy
            norm_entropy = entropy / max_entropy  # B
            
            # Apply gating based on entropy threshold
            gate = (norm_entropy > self.beta).float()  # B
            
            entropies.append(norm_entropy)
            gates.append(gate)
        
        # Stack entropies and gates
        entropies = torch.stack(entropies, dim=1)  # B x C
        gates = torch.stack(gates, dim=1)  # B x C
        
        # Apply gates to channels
        gates = gates.view(batch_size, channels, 1, 1)  # B x C x 1 x 1
        gated_output = x * gates
        
        # Add residual connection to preserve some original features
        output = gated_output + self.residual_weight * x
        
        return output

class EOANetModule(nn.Module):
    """
    Entropy-Optimized Attention Network (EOANet) module
    Combines Normalized Multi-Scale Attention with Entropy-Optimized Gating
    """
    def __init__(self, in_channels, scales=[1, 2, 4], beta=0.5):
        super(EOANetModule, self).__init__()
        self.msa = NormalizedMultiScaleAttention(in_channels, scales)
        self.eog = EntropyOptimizedGating(in_channels, beta)
        
    def forward(self, x):
        # Apply normalized multi-scale attention
        x_msa = self.msa(x)
        
        # Apply entropy-optimized gating
        x_eog = self.eog(x_msa)
        
        return x_eog