File size: 66,455 Bytes
62a2f1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
from torch_geometric.data import HeteroData
import os
import json
import yaml
import pathlib
from src.utils import count_parameters, AVGMeter, Reporter, Timer
from src.oven import Oven
from loguru import logger
import torch.distributed as dist
from src.utils import set_random_seed, setup_distributed, setup_default_logging_wt_dir
import pprint
import torch
import torch.nn as nn
import argparse
from torch.nn.utils import clip_grad_norm_
import numpy as np
from torch.optim.lr_scheduler import ReduceLROnPlateau
from torch_geometric.nn import Linear, ResGatedGraphConv, HeteroConv
import torch.nn.functional as F
from scipy.sparse.csgraph import floyd_warshall
from metrics import RMSE
import traceback
def calculate_gpri(batch_original, batch_perturbed, edge_scores, k=10):
    """
    Calculate Graph Perturbation Robustness Index (GPRI)
    
    Args:
        batch_original: Original batch data
        batch_perturbed: Perturbed batch data
        edge_scores: Edge importance scores
        k: Number of top connections to consider
        
    Returns:
        gpri: Graph Perturbation Robustness Index
    """
    gpri_values = []
    
    for edge_type in edge_scores:
        # Get top-k important edges in original graph
        scores_orig = edge_scores[edge_type]
        if len(scores_orig) == 0:
            continue
            
        _, top_indices_orig = torch.topk(scores_orig, min(k, len(scores_orig)))
        top_edges_orig = set(top_indices_orig.cpu().numpy())
        
        # Get corresponding edges in perturbed graph
        if edge_type in batch_perturbed.edge_index_dict:
            edge_index_perturbed = batch_perturbed.edge_index_dict[edge_type]
            
            # Calculate intersection size
            intersection_size = len(top_edges_orig.intersection(set(range(edge_index_perturbed.size(1)))))
            
            # Calculate GPRI for this edge type
            if len(top_edges_orig) > 0:
                gpri_values.append(intersection_size / len(top_edges_orig))
    
    # Average GPRI across all edge types
    if len(gpri_values) > 0:
        return sum(gpri_values) / len(gpri_values)
    else:
        return 0.0

def vm_va_matrix(batch: HeteroData, mode="train"):
    Vm, Va, P_net, Q_net, Gs, Bs = 0, 1, 2, 3, 4, 5
    Ybus = create_Ybus(batch)
    delta_p, delta_q = deltapq_loss(batch, Ybus)
    
    # Calculate RMSE metrics
    matrix = {
        f"{mode}/PQ_Vm_rmse": RMSE(batch['PQ'].x[:, Vm], batch['PQ'].y[:, Vm]),
        f"{mode}/PQ_Va_rmse": RMSE(batch['PQ'].x[:, Va], batch['PQ'].y[:, Va]),
        f"{mode}/PV_Va_rmse": RMSE(batch['PV'].x[:, Va], batch['PV'].y[:, Va]),
        f"{mode}/delta_p": delta_p.abs().mean().item(),
        f"{mode}/delta_q": delta_q.abs().mean().item(),
    }
    
    # Add GPRI if edge scores are available
    if hasattr(batch, 'edge_scores') and batch.edge_scores:
        try:
            # Create a perturbed version of the batch for GPRI calculation
            batch_perturbed = batch.clone()
            
            # Apply small perturbation to edge attributes (5% noise)
            for edge_type, edge_attr in batch_perturbed.edge_attr_dict.items():
                if edge_attr is not None and len(edge_attr) > 0:
                    noise = torch.randn_like(edge_attr) * 0.05 * edge_attr.abs()
                    batch_perturbed[edge_type].edge_attr = edge_attr + noise
            
            # Calculate GPRI
            gpri = calculate_gpri(batch, batch_perturbed, batch.edge_scores)
            matrix[f"{mode}/GPRI"] = gpri
        except Exception as e:
            # If GPRI calculation fails, log and continue
            print(f"GPRI calculation failed: {e}")
    
    return matrix

def bi_deltapq_loss(graph_data: HeteroData, need_clone=False,
                    filt_type=True, aggr='abs'):
    """compute deltapq loss

    Args:
        graph_data (Hetero Graph): Batched Hetero graph data
        preds (dict): preds results

    Returns:
        torch.float: deltapq loss
    """
    def inner_deltapq_loss(bus, branch, edge_index, device):
        # makeYbus, reference to pypower makeYbus
        nb = bus.shape[0]  # number of buses
        nl = edge_index.shape[1]  # number of branch

        # branch = homo_graph_data.edge_attr
        BR_R, BR_X, BR_B, TAP, SHIFT = 0, 1, 2, 3, 4
        # bus = homo_graph_data.x
        PD, QD, GS, BS, PG, QG, VM, VA = 0, 1, 2, 3, 4, 5, 6, 7

        Ys = 1.0 / (branch[:, BR_R] + 1j * branch[:, BR_X])
        Bc = branch[:, BR_B]
        tap = torch.ones(nl).to(device)
        i = torch.nonzero(branch[:, TAP])
        tap[i] = branch[i, TAP]
        tap = tap * torch.exp(1j * branch[:, SHIFT])

        Ytt = Ys + 1j * Bc / 2
        Yff = Ytt / (tap * torch.conj(tap))
        Yft = - Ys / torch.conj(tap)
        Ytf = - Ys / tap

        Ysh = bus[:, GS] + 1j * bus[:, BS]

        # build connection matrices
        f = edge_index[0]
        t = edge_index[1]
        Cf = torch.sparse_coo_tensor(
            torch.vstack([torch.arange(nl).to(device), f]),
            torch.ones(nl).to(device),
            (nl, nb)
        ).to(torch.complex64)
        Ct = torch.sparse_coo_tensor(
            torch.vstack([torch.arange(nl).to(device), t]),
            torch.ones(nl).to(device),
            (nl, nb)
        ).to(torch.complex64)

        i_nl = torch.cat([torch.arange(nl), torch.arange(nl)], dim=0).to(device)
        i_ft = torch.cat([f, t], dim=0)

        Yf = torch.sparse_coo_tensor(
            torch.vstack([i_nl, i_ft]),
            torch.cat([Yff, Yft], dim=0),
            (nl, nb),
            dtype=torch.complex64
        )

        Yt = torch.sparse_coo_tensor(
            torch.vstack([i_nl, i_ft]),
            torch.cat([Ytf, Ytt], dim=0),
            (nl, nb),
            dtype=torch.complex64
        )

        Ysh_square = torch.sparse_coo_tensor(
            torch.vstack([torch.arange(nb), torch.arange(nb)]).to(device),
            Ysh,
            (nb, nb),
            dtype=torch.complex64
        )

        Ybus = torch.matmul(Cf.T.to(torch.complex64), Yf) +\
            torch.matmul(Ct.T.to(torch.complex64), Yt) + Ysh_square

        v = bus[:, VM] * torch.exp(1j * bus[:, VA])

        i = torch.matmul(Ybus, v)
        i = torch.conj(i)
        s = v * i
        pd = bus[:, PD] + 1j * bus[:, QD]
        pg = bus[:, PG] + 1j * bus[:, QG]
        s = s + pd - pg

        delta_p = torch.real(s)
        delta_q = torch.imag(s)
        return delta_p, delta_q

    # preprocess
    if need_clone:
        graph_data = graph_data.clone()
    device = graph_data['PQ'].x.device

    # PQ: PD, QD, GS, BS, PG, QG, Vm, Va
    graph_data['PQ'].x = torch.cat([
        graph_data['PQ'].supply,
        graph_data['PQ'].x[:, :2]],
        dim=1)
    # PV: PD, QD, GS, BS, PG, QG, Vm, Va
    graph_data['PV'].x = torch.cat([
        graph_data['PV'].supply,
        graph_data['PV'].x[:, :2]],
        dim=1)
    # Slack PD, QD, GS, BS, PG, QG, Vm, Va
    graph_data['Slack'].x = torch.cat([
        graph_data['Slack'].supply,
        graph_data['Slack'].x[:, :2]],
        dim=1)

    # convert to homo graph for computing Ybus loss
    homo_graph_data = graph_data.to_homogeneous()

    index_diff = homo_graph_data.edge_index[1, :] - homo_graph_data.edge_index[0, :]
    # to index bigger than from index
    edge_attr_1 = homo_graph_data.edge_attr[index_diff > 0, :]
    edge_index_1 = homo_graph_data.edge_index[:, index_diff > 0]
    delta_p_1, delta_q_1 = inner_deltapq_loss(homo_graph_data.x, edge_attr_1, edge_index_1, device)

    # from index bigger than to index
    edge_index_2 = homo_graph_data.edge_index[:, index_diff < 0]
    edge_attr_2 = homo_graph_data.edge_attr[index_diff < 0, :]
    delta_p_2, delta_q_2 = inner_deltapq_loss(homo_graph_data.x, edge_attr_2, edge_index_2, device)

    delta_p, delta_q = (delta_p_1 + delta_p_2) / 2.0, (delta_q_1 + delta_q_2) / 2.0

    if filt_type:
        PQ_mask = homo_graph_data['node_type'] == 0
        PV_mask = homo_graph_data['node_type'] == 1
        delta_p = delta_p[PQ_mask | PV_mask]
        delta_q = delta_q[PQ_mask]

    if aggr == "abs":
        loss = delta_p.abs().mean() + delta_q.abs().mean()
    elif aggr == "square":
        loss = (delta_p**2).mean() + (delta_q**2).mean()
    else:
        raise TypeError(f"no such aggr: {aggr}")
    return loss


def create_Ybus(batch: HeteroData):
    homo_batch = batch.to_homogeneous().detach()
    bus = homo_batch.x
    index_diff = homo_batch.edge_index[1, :] - homo_batch.edge_index[0, :]
    # to index bigger than from index
    edge_attr = homo_batch.edge_attr[index_diff > 0, :]
    edge_index_ori = homo_batch.edge_index[:, index_diff > 0]
    device = batch['PQ'].x.device
    with torch.no_grad():
        edge_mask = torch.isnan(edge_attr[:,0])
        edge_attr = edge_attr[~edge_mask]
        edge_index = torch.vstack([edge_index_ori[0][~edge_mask],edge_index_ori[1][~edge_mask]])
        # makeYbus, reference to pypower makeYbus
        nb = bus.shape[0]  # number of buses
        nl = edge_index.shape[1]  # number of edges
        Vm, Va, P_net, Q_net, Gs, Bs = 0, 1, 2, 3, 4, 5
        BR_R, BR_X, BR_B, TAP, SHIFT = 0, 1, 2, 3, 4

        Ys = 1.0 / (edge_attr[:, BR_R] + 1j * edge_attr[:, BR_X])
        Bc = edge_attr[:, BR_B]
        tap = torch.ones(nl).to(device)
        i = torch.nonzero(edge_attr[:, TAP])
        tap[i] = edge_attr[i, TAP]
        tap = tap * torch.exp(1j * edge_attr[:, SHIFT])

        Ytt = Ys + 1j * Bc / 2
        Yff = Ytt / (tap * torch.conj(tap))
        Yft = - Ys / torch.conj(tap)
        Ytf = - Ys / tap

        Ysh = bus[:, Gs] + 1j * bus[:, Bs]

        # build connection matrices
        f = edge_index[0]
        t = edge_index[1]
        Cf = torch.sparse_coo_tensor(
            torch.vstack([torch.arange(nl).to(device), f]),
            torch.ones(nl).to(device),
            (nl, nb)
        ).to(torch.complex64)
        Ct = torch.sparse_coo_tensor(
            torch.vstack([torch.arange(nl).to(device), t]),
            torch.ones(nl).to(device),
            (nl, nb)
        ).to(torch.complex64)

        i_nl = torch.cat([torch.arange(nl), torch.arange(nl)], dim=0).to(device)
        i_ft = torch.cat([f, t], dim=0)

        Yf = torch.sparse_coo_tensor(
            torch.vstack([i_nl, i_ft]),
            torch.cat([Yff, Yft], dim=0),
            (nl, nb),
            dtype=torch.complex64
        )

        Yt = torch.sparse_coo_tensor(
            torch.vstack([i_nl, i_ft]),
            torch.cat([Ytf, Ytt], dim=0),
            (nl, nb),
            dtype=torch.complex64
        )

        Ysh_square = torch.sparse_coo_tensor(
            torch.vstack([torch.arange(nb), torch.arange(nb)]).to(device),
            Ysh,
            (nb, nb),
            dtype=torch.complex64
        )

        Ybus = torch.matmul(Cf.T.to(torch.complex64), Yf) +\
                torch.matmul(Ct.T.to(torch.complex64), Yt) + Ysh_square
    return Ybus

def deltapq_loss(batch, Ybus):
    Vm, Va, P_net, Q_net = 0, 1, 2, 3
    bus = batch.to_homogeneous().x
    v = bus[:, Vm] * torch.exp(1j * bus[:, Va])
    i = torch.conj(torch.matmul(Ybus, v))
    s = v * i + bus[:, P_net] + 1j * bus[:, Q_net]

    delta_p = torch.real(s)
    delta_q = torch.imag(s)
    return delta_p, delta_q


# -------------------------- #
#     1. various modules     #
# -------------------------- #
def compute_shortest_path_distances(adj_matrix):
    distances = floyd_warshall(csgraph=adj_matrix, directed=False)
    return distances


def convert_x_to_tanhx(tensor_in):
    return torch.tanh(tensor_in)


# ----- Enhanced Edge-Node Hierarchical Pooling (EENHPool)
class EENHPool(nn.Module):
    def __init__(self, in_dim, edge_dim, hidden_dim=None):
        super(EENHPool, self).__init__()
        hidden_dim = hidden_dim or in_dim
        
        # Node and edge scoring parameters
        self.W_h = nn.Linear(edge_dim, hidden_dim)
        self.W_n = nn.Linear(in_dim * 2, hidden_dim)
        self.w_e = nn.Parameter(torch.Tensor(hidden_dim, 1))
        nn.init.xavier_uniform_(self.w_e)
        
        # Feature transformation
        self.feature_transform = nn.Linear(in_dim, in_dim)
        
    def forward(self, x_dict, edge_index_dict, edge_attr_dict):
        """
        Compute hierarchical edge importance and lift local features
        
        Args:
            x_dict: Dictionary of node features for each node type
            edge_index_dict: Dictionary of edge indices for each edge type
            edge_attr_dict: Dictionary of edge attributes for each edge type
            
        Returns:
            local_features: Dictionary of lifted local features for each node type
            edge_scores: Dictionary of edge importance scores
        """
        local_features = {}
        edge_scores = {}
        
        # First pass: compute edge scores
        for edge_type, edge_index in edge_index_dict.items():
            if edge_type not in edge_attr_dict or edge_index.size(1) == 0:
                # Skip if no edges or no attributes
                edge_scores[edge_type] = torch.tensor([], device=edge_index.device)
                continue
                
            src_type, _, dst_type = edge_type
            
            # Get node features
            x_src = x_dict[src_type]
            x_dst = x_dict[dst_type]
            edge_attr = edge_attr_dict[edge_type]
            
            # Compute edge scores
            src_idx, dst_idx = edge_index
            node_features = torch.cat([x_src[src_idx], x_dst[dst_idx]], dim=1)
            
            # Enhanced edge importance calculation with attention mechanism
            edge_h = self.W_h(edge_attr)
            node_h = self.W_n(node_features)
            combined_h = F.relu(edge_h + node_h)
            scores = torch.matmul(combined_h, self.w_e).squeeze(-1)
            alpha = F.softmax(scores, dim=0)
            
            edge_scores[edge_type] = alpha
            
        # Second pass: compute local features with weighted aggregation
        for edge_type, edge_index in edge_index_dict.items():
            if edge_type not in edge_attr_dict or edge_index.size(1) == 0:
                continue
                
            src_type, _, dst_type = edge_type
            src_idx, dst_idx = edge_index
            alpha = edge_scores[edge_type]
            
            # Initialize local features if not already done
            for node_type in [src_type, dst_type]:
                if node_type not in local_features:
                    local_features[node_type] = torch.zeros_like(x_dict[node_type])
            
            # Compute local features (graph lifting) with importance-weighted aggregation
            if src_type == dst_type:
                # Self-loops: special handling for self-connections
                local_features[src_type].index_add_(
                    0, src_idx, 
                    -alpha.unsqueeze(1) * x_dict[dst_type][dst_idx]
                )
            else:
                # Regular edges between different node types
                local_features[src_type].index_add_(
                    0, src_idx, 
                    -alpha.unsqueeze(1) * x_dict[dst_type][dst_idx]
                )
                
                local_features[dst_type].index_add_(
                    0, dst_idx,
                    -alpha.unsqueeze(1) * x_dict[src_type][src_idx]
                )
        
        # Add original features and apply feature transformation with residual connection
        for node_type in x_dict:
            if node_type in local_features:
                # u_i = x_i - sum(alpha_ij * x_j)
                local_features[node_type] = x_dict[node_type] + local_features[node_type]
                # Apply feature transformation with residual connection
                local_features[node_type] = local_features[node_type] + self.feature_transform(local_features[node_type])
            else:
                # If no neighbors, just use the original features
                local_features[node_type] = x_dict[node_type]
            
        return local_features, edge_scores

# ----- ca
class CrossAttention(nn.Module):
    def __init__(self, in_dim1, in_dim2, k_dim, v_dim, num_heads):
        super(CrossAttention, self).__init__()
        self.num_heads = num_heads
        self.k_dim = k_dim
        self.v_dim = v_dim
        
        self.proj_q1 = nn.Linear(in_dim1, k_dim * num_heads, bias=False)
        self.proj_k2 = nn.Linear(in_dim2, k_dim * num_heads, bias=False)
        self.proj_v2 = nn.Linear(in_dim2, v_dim * num_heads, bias=False)
        self.proj_o = nn.Linear(v_dim * num_heads, in_dim1)
        
    def forward(self, x1, x2, mask=None):
        batch_size, seq_len1, in_dim1 = x1.size()
        seq_len2 = x2.size(1)
        
        q1 = self.proj_q1(x1).view(batch_size, seq_len1, self.num_heads, self.k_dim).permute(0, 2, 1, 3)
        k2 = self.proj_k2(x2).view(batch_size, seq_len2, self.num_heads, self.k_dim).permute(0, 2, 3, 1)
        v2 = self.proj_v2(x2).view(batch_size, seq_len2, self.num_heads, self.v_dim).permute(0, 2, 1, 3)
        
        attn = torch.matmul(q1, k2) / self.k_dim**0.5
        # print("s1", q1.shape, k2.shape, attn.shape)
        
        if mask is not None:
            attn = attn.masked_fill(mask == 0, -1e9)
        
        attn = F.softmax(attn, dim=-1)
        output = torch.matmul(attn, v2).permute(0, 2, 1, 3)
        # print("s2", output.shape)
        output= output.contiguous().view(batch_size, seq_len1, -1)
        # print("s3", output.shape)
        output = self.proj_o(output)
        # print("s4", output.shape)
    
        return output


# ------- ffn ---
class GLUFFN(nn.Module):
    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, dropout_ratio=0.1):
        # in A*2, hidden:A2, out:A
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features * 2)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(dropout_ratio)

    def forward(self, x):
        x, v = self.fc1(x).chunk(2, dim=-1)
        x = self.act(x) * v
        x = self.fc2(x)
        x = self.drop(x)
        return x


class GatedFusion(nn.Module):
    def __init__(self, in_features, 
                 hidden_features=None, 
                 out_features=None, 
                 act_layer=nn.GELU, 
                 batch_size=100,
                 dropout_ratio=0.1):
        super(GatedFusion, self).__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features * 2, hidden_features * 2)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(dropout_ratio)
        self.batch_size = batch_size

    def forward(self, pq_features, slack_features):
        # get size
        BK, D = pq_features.size()
        B = self.batch_size
        K = BK // B
        pq_features = pq_features.view(B, K, D)  # (B, K, D)
        slack_expanded = slack_features.unsqueeze(1).expand(-1, K, -1)  # (B, K, D)
        combined = torch.cat([pq_features, slack_expanded], dim=-1)  # (B, K, 2D)

        x = self.fc1(combined)  # (B, K, 2 * hidden_features)
        x, v = x.chunk(2, dim=-1)  # (B, K, hidden_features) each
        x = self.act(x) * v  # (B, K, hidden_features)
        x = self.fc2(x)  # (B, K, D)
        x = self.drop(x)  # (B, K, D)

        return x.contiguous().view(B*K, D)


# -------------------------- #
#     2. various layers      #
# -------------------------- #
class GraphLayer(torch.nn.Module):
    def __init__(self, 
                 emb_dim, 
                 edge_dim,
                 num_heads,
                 batch_size,
                 with_norm,
                 act_layer=nn.ReLU,
                 gcn_layer_per_block=2):
        super().__init__()
        
        self.graph_layers = nn.ModuleList()
        for _ in range(gcn_layer_per_block):
            self.graph_layers.append(
                HeteroConv({
                        ('PQ', 'default', 'PQ'): ResGatedGraphConv((emb_dim,emb_dim), emb_dim, edge_dim=edge_dim),
                        ('PQ', 'default', 'PV'): ResGatedGraphConv((emb_dim,emb_dim), emb_dim, edge_dim=edge_dim),
                        ('PQ', 'default', 'Slack'): ResGatedGraphConv((emb_dim,emb_dim), emb_dim, edge_dim=edge_dim),
                        ('PV', 'default', 'PQ'): ResGatedGraphConv((emb_dim,emb_dim), emb_dim, edge_dim=edge_dim),
                        ('PV', 'default', 'PV'): ResGatedGraphConv((emb_dim,emb_dim), emb_dim, edge_dim=edge_dim),
                        ('PV', 'default', 'Slack'): ResGatedGraphConv((emb_dim,emb_dim), emb_dim, edge_dim=edge_dim),
                        ('Slack', 'default', 'PQ'): ResGatedGraphConv((emb_dim,emb_dim), emb_dim, edge_dim=edge_dim),
                        ('Slack', 'default', 'PV'): ResGatedGraphConv((emb_dim,emb_dim), emb_dim, edge_dim=edge_dim),
                    }, 
                    aggr='sum')
            )
        self.act_layer = act_layer()
        self.global_transform = nn.Linear(emb_dim, emb_dim)

        self.cross_attention = CrossAttention(in_dim1=emb_dim,
                                              in_dim2=emb_dim,
                                              k_dim=emb_dim//num_heads,
                                              v_dim=emb_dim//num_heads,
                                              num_heads=num_heads)

        self.norm = torch.nn.LayerNorm(emb_dim) if with_norm else nn.Identity()
        self.batch_size = batch_size


    def forward(self, batch: HeteroData):
        graph_x_dict = batch.x_dict

        # vitual global node
        pq_x = torch.stack(torch.chunk(graph_x_dict['PQ'], self.batch_size, dim=0), dim=0) # B, 29, D
        pv_x = torch.stack(torch.chunk(graph_x_dict['PV'], self.batch_size, dim=0), dim=0)
        slack_x = torch.stack(torch.chunk(graph_x_dict['Slack'], self.batch_size, dim=0), dim=0)
        global_feature = torch.cat((pq_x,pv_x,slack_x), dim=1) # B, (29+9+1), D
        global_feature = self.global_transform(global_feature)
        global_feature_mean = global_feature.mean(dim=1, keepdim=True)
        global_feature_max, _ = global_feature.max(dim=1, keepdim=True)

        # forward gcn
        for layer in self.graph_layers:
            graph_x_dict = layer(graph_x_dict, 
                                 batch.edge_index_dict,
                                 batch.edge_attr_dict)
            ## NEW: add non-linear
            graph_x_dict = {key: self.act_layer(x) for key, x in graph_x_dict.items()}

        global_node_feat = torch.cat([global_feature_mean, global_feature_max], dim=1)
        
        # cross attent the global feat.
        res = {}
        for key in ["PQ", "PV"]:
            # get size
            BN, K = batch[key].x.size()
            B = self.batch_size
            N = BN // B
            # ca
            graph_x_dict[key] = graph_x_dict[key] + self.cross_attention(graph_x_dict[key].view(B, N, K), global_node_feat).contiguous().view(B*N, K)
            # norm
            res[key] = self.norm(graph_x_dict[key])
        res["Slack"] = graph_x_dict["Slack"]

        return res


# ----- ffn layers
class FFNLayer(torch.nn.Module):

    def __init__(self, 
                embed_dim_in: int,
                embed_dim_hid: int,
                embed_dim_out: int, 
                mlp_dropout: float, 
                with_norm: bool,
                act_layer=nn.GELU):
        super().__init__()

        # in: embed_dim_out, hidden: embed_dim_hid*2, out: embed_dim_out
        self.mlp = GLUFFN(in_features=embed_dim_in, 
                          hidden_features=embed_dim_hid, 
                          out_features=embed_dim_out,
                          act_layer=act_layer,
                          dropout_ratio=mlp_dropout)

        self.norm = torch.nn.LayerNorm(embed_dim_out) if with_norm else nn.Identity()

    def forward(self, x):
        x = x + self.mlp(x)
        return self.norm(x)
    

class FFNFuseLayer(torch.nn.Module):

    def __init__(self, 
                embed_dim_in: int,
                embed_dim_hid: int,
                embed_dim_out: int, 
                mlp_dropout: float, 
                with_norm: bool,
                batch_size: int,
                act_layer=nn.GELU):
        super().__init__()
        self.mlp = GatedFusion(in_features=embed_dim_in, 
                          hidden_features=embed_dim_hid, 
                          out_features=embed_dim_out,
                          act_layer=act_layer, 
                          batch_size=batch_size,
                          dropout_ratio=mlp_dropout)

        self.norm = torch.nn.LayerNorm(embed_dim_out) if with_norm else nn.Identity()

    def forward(self, x, x_aux):
        x = x + self.mlp(x, x_aux)
        return self.norm(x)


# ----- Stability-Regularized Temporal Graph Transformer (SRT-GT)
class SRT_GT(nn.Module):
    def __init__(self, in_dim, hidden_dim, num_timesteps, dropout=0.1):
        super(SRT_GT, self).__init__()
        
        # Temporal parameters with better initialization values
        self.gamma = nn.Parameter(torch.Tensor(num_timesteps))
        self.eta = nn.Parameter(torch.Tensor(num_timesteps))
        # Initialize with small positive values for stability
        nn.init.constant_(self.gamma, 0.15)  # Slightly increased for better message passing
        nn.init.constant_(self.eta, 0.6)     # Slightly increased for better self-loop importance
        
        # Transformation matrices with layer normalization
        self.W_t = nn.ModuleList([
            nn.Sequential(
                nn.Linear(in_dim, in_dim),
                nn.LayerNorm(in_dim)
            ) for _ in range(num_timesteps)
        ])
        
        # Integration parameter for local features
        self.xi = nn.Parameter(torch.Tensor(1))
        nn.init.constant_(self.xi, 0.2)  # Increased to give more weight to local features
        
        # Output projection for better feature integration
        self.output_proj = nn.Linear(in_dim, in_dim)
        
        self.dropout = nn.Dropout(dropout)
        self.act = nn.ReLU()
        
        # Store temporal edge importances for regularization
        self.temporal_edge_importances = []
        
    def forward(self, x_dict, edge_index_dict, edge_attr_dict, local_features, timestep):
        """
        Apply temporal graph transformer update with improved stability
        
        Args:
            x_dict: Dictionary of node features for each node type
            edge_index_dict: Dictionary of edge indices for each edge type
            edge_attr_dict: Dictionary of edge attributes for each edge type
            local_features: Dictionary of lifted local features from EENHPool
            timestep: Current timestep
            
        Returns:
            updated_x_dict: Updated node features
        """
        updated_x_dict = {}
        edge_importances = {}
        
        # First pass: compute messages for all edges
        messages_dict = {}
        for edge_type, edge_index in edge_index_dict.items():
            if edge_index.size(1) == 0:
                # Skip if no edges
                continue
                
            src_type, _, dst_type = edge_type
            
            # Get node features
            x_src = x_dict[src_type]
            
            # Compute attention scores for message passing
            src_idx, dst_idx = edge_index
            
            # Transform source node features
            messages = self.W_t[timestep](x_src[src_idx])
            
            # Apply temporal coefficient
            gamma_t = torch.sigmoid(self.gamma[timestep])
            
            # Store messages for aggregation
            if dst_type not in messages_dict:
                messages_dict[dst_type] = []
            
            # Store weighted messages and indices
            messages_dict[dst_type].append((dst_idx, gamma_t * messages))
            
            # Store edge importances for regularization
            edge_importances[edge_type] = gamma_t
        
        # Second pass: aggregate messages and apply self-loops
        for node_type in x_dict:
            # Initialize with original features (residual connection)
            if node_type not in updated_x_dict:
                updated_x_dict[node_type] = x_dict[node_type].clone()
            
            # Aggregate messages if any
            if node_type in messages_dict:
                for dst_idx, messages in messages_dict[node_type]:
                    updated_x_dict[node_type].index_add_(0, dst_idx, messages)
            
            # Apply self-loop with eta parameter (gating mechanism)
            eta_t = torch.sigmoid(self.eta[timestep])
            
            # Residual connection with gated self-loop
            updated_x_dict[node_type] = (1 - eta_t) * updated_x_dict[node_type] + eta_t * x_dict[node_type]
            
            # Integrate local features with xi parameter
            if node_type in local_features:
                # Adaptive integration of local features
                updated_x_dict[node_type] = updated_x_dict[node_type] + self.xi * local_features[node_type]
            
            # Apply non-linearity, projection and dropout
            updated_x_dict[node_type] = self.act(updated_x_dict[node_type])
            updated_x_dict[node_type] = self.output_proj(updated_x_dict[node_type]) + updated_x_dict[node_type]  # Residual connection
            updated_x_dict[node_type] = self.dropout(updated_x_dict[node_type])
        
        # Store edge importances for regularization loss
        self.temporal_edge_importances.append(edge_importances)
        
        return updated_x_dict
    
    def get_temporal_regularization_loss(self, lambda_reg=0.001):
        """
        Compute temporal regularization loss to enforce smoothness
        
        Args:
            lambda_reg: Regularization weight (reduced for better balance)
            
        Returns:
            reg_loss: Temporal regularization loss
        """
        if len(self.temporal_edge_importances) <= 1:
            return torch.tensor(0.0, device=self.gamma.device)
        
        reg_loss = torch.tensor(0.0, device=self.gamma.device)
        
        # Compute L2 difference between consecutive timesteps
        for t in range(len(self.temporal_edge_importances) - 1):
            for edge_type in self.temporal_edge_importances[t]:
                if edge_type in self.temporal_edge_importances[t+1]:
                    diff = self.temporal_edge_importances[t+1][edge_type] - self.temporal_edge_importances[t][edge_type]
                    reg_loss = reg_loss + torch.sum(diff ** 2)
        
        return lambda_reg * reg_loss
    
    def reset_temporal_importances(self):
        """Reset stored temporal edge importances"""
        self.temporal_edge_importances = []

# -------------------------- #
#     3. building block      #
# -------------------------- #
class HybridBlock(nn.Module):
    def __init__(self, 
                 emb_dim_in, 
                 emb_dim_out, 
                 with_norm, 
                 edge_dim, 
                 batch_size,
                 dropout_ratio=0.1,
                 layers_in_gcn=2,
                 heads_ca=4,
                 num_timesteps=3):
        super(HybridBlock, self).__init__()
        self.emb_dim_in = emb_dim_in
        self.with_norm = with_norm
        self.num_timesteps = num_timesteps

        # Enhanced Edge-Node Hierarchical Pooling
        self.eenhpool = EENHPool(in_dim=emb_dim_in, edge_dim=edge_dim)
        
        # Stability-Regularized Temporal Graph Transformer
        self.srt_gt = SRT_GT(
            in_dim=emb_dim_in,
            hidden_dim=emb_dim_in,
            num_timesteps=num_timesteps,
            dropout=dropout_ratio
        )
        
        # Keep the original graph layer as fallback
        self.branch_graph = GraphLayer(emb_dim=emb_dim_in,
                                       edge_dim=edge_dim, 
                                       num_heads=heads_ca, 
                                       batch_size=batch_size,
                                       with_norm=with_norm, 
                                       gcn_layer_per_block=layers_in_gcn)

        # ---- mlp: activation + increase dimension
        self.ffn = nn.ModuleDict()
        self.ffn['PQ'] = FFNFuseLayer(embed_dim_in=emb_dim_in, embed_dim_hid=emb_dim_out,
                                    embed_dim_out=emb_dim_out,
                                    batch_size=batch_size,
                                    mlp_dropout=dropout_ratio, 
                                    with_norm=with_norm)
        self.ffn['PV'] = FFNFuseLayer(embed_dim_in=emb_dim_in, embed_dim_hid=emb_dim_out,
                                    embed_dim_out=emb_dim_out,
                                    batch_size=batch_size,
                                    mlp_dropout=dropout_ratio, 
                                    with_norm=with_norm)
        self.ffn['Slack'] = FFNLayer(embed_dim_in=emb_dim_in, embed_dim_hid=emb_dim_out,
                                    embed_dim_out=emb_dim_out,
                                    mlp_dropout=dropout_ratio, 
                                    with_norm=with_norm)

    def forward(self, batch: HeteroData):
        # Store original features for residual connections
        original_features = {k: v.clone() for k, v in batch.x_dict.items()}
        
        # Apply the original graph layer first for better feature extraction
        res_graph = self.branch_graph(batch)
        
        # Update batch with graph layer results
        for key in res_graph:
            batch[key].x = res_graph[key]
        
        # Get local features using EENHPool
        local_features, edge_scores = self.eenhpool(
            batch.x_dict, 
            batch.edge_index_dict, 
            batch.edge_attr_dict
        )
        
        # Reset temporal importances at the beginning of each forward pass
        self.srt_gt.reset_temporal_importances()
        
        # Apply temporal graph transformer for multiple timesteps
        x_dict = batch.x_dict.copy()
        for t in range(self.num_timesteps):
            x_dict = self.srt_gt(
                x_dict,
                batch.edge_index_dict,
                batch.edge_attr_dict,
                local_features,
                t
            )
        
        # Adaptive feature fusion with original features (global residual connection)
        for node_type, x in x_dict.items():
            # Weighted combination of transformed features and original features
            alpha = 0.7  # Weight for transformed features
            batch[node_type].x = alpha * x + (1 - alpha) * original_features[node_type]
            
        # Store edge scores for GPRI calculation
        # Use setattr to avoid attribute error
        setattr(batch, 'edge_scores', edge_scores)
        
        # Apply FFN layers
        feat_slack = batch["Slack"].x
        
        for key in batch.x_dict:
            x = batch[key].x
            if "slack" in key.lower():
                batch[key].x = self.ffn[key](x)
            else:
                batch[key].x = self.ffn[key](x, feat_slack)
        
        # Store temporal regularization loss for later use
        # Use setattr to avoid attribute error
        setattr(batch, 'temporal_reg_loss', self.srt_gt.get_temporal_regularization_loss())

        return batch

# -------------------------- #
#     4. powerflow net       #
# -------------------------- #
class PFNet(nn.Module):
    def __init__(self, 
                 hidden_channels, 
                 num_block, 
                 with_norm,  
                 batch_size,
                 dropout_ratio,
                 heads_ca, 
                 layers_per_graph=2,
                 flag_use_edge_feat=False,
                 num_timesteps=2,
                 lambda_reg=0.001):
        super(PFNet, self).__init__()

        # ---- parse params ----
        if isinstance(hidden_channels, list):
            hidden_block_layers = hidden_channels
            num_block = len(hidden_block_layers) - 1
        elif isinstance(hidden_channels, int):
            hidden_block_layers = [hidden_channels] * (num_block+1)
        else:
            raise TypeError("Unsupported type: {}".format(type(hidden_channels)))
        self.hidden_block_layers = hidden_block_layers
        self.flag_use_edge_feat = flag_use_edge_feat
        self.lambda_reg = lambda_reg

        # ---- edge encoder ----
        if self.flag_use_edge_feat:
            self.edge_encoder = Linear(5, hidden_channels)
            edge_dim = hidden_channels
        else:
            self.edge_encoder = None
            edge_dim = 5

        # ---- node encoder ----
        self.encoders = nn.ModuleDict()
        self.encoders['PQ'] = Linear(6, hidden_block_layers[0])
        self.encoders['PV'] = Linear(6, hidden_block_layers[0])
        self.encoders['Slack'] = Linear(6, hidden_block_layers[0])
        
        # ---- blocks ----
        self.blocks = nn.ModuleList()
        for channel_in, channel_out in zip(hidden_block_layers[:-1], hidden_block_layers[1:]):
            self.blocks.append(
                HybridBlock(emb_dim_in=channel_in, 
                    emb_dim_out=channel_out, 
                    with_norm=with_norm, 
                    edge_dim=edge_dim, 
                    batch_size=batch_size,
                    dropout_ratio=dropout_ratio,
                    layers_in_gcn=layers_per_graph,
                    heads_ca=heads_ca,
                    num_timesteps=num_timesteps)
            )
        self.num_blocks = len(self.blocks)
        
        # predictor        
        final_dim = sum(hidden_block_layers) - hidden_block_layers[0]
        self.predictor = nn.ModuleDict()
        self.predictor['PQ'] = Linear(final_dim, 6)
        self.predictor['PV'] = Linear(final_dim, 6)
        

    def forward(self, batch):
        # construct edge feats if neccessary
        if self.flag_use_edge_feat:
            for key in batch.edge_attr_dict:
                cur_edge_attr = batch.edge_attr_dict[key]
                r, x = cur_edge_attr[:, 0], cur_edge_attr[:, 1]
                cur_edge_attr[:, 0], cur_edge_attr[:, 1] = \
                    1.0 / torch.sqrt(r ** 2 + x ** 2), torch.arctan(r / x)
                # edge_attr_dict[key] = self.edge_encoder(cur_edge_attr)
                batch[key].edge_attr = self.edge_encoder(cur_edge_attr)
        
        # encoding
        for key, x in batch.x_dict.items():
            # print("="*20, key, "\t", x.shape)
            batch[key].x = self.encoders[key](x)

        # blocks and aspp
        multi_level_pq = []
        multi_level_pv = []
        for index, block in enumerate(self.blocks):
                batch = block(batch)
                multi_level_pq.append(batch["PQ"].x)
                multi_level_pv.append(batch["PV"].x)

        output = {
            'PQ': self.predictor['PQ'](torch.cat(multi_level_pq, dim=1)),
            'PV': self.predictor['PV'](torch.cat(multi_level_pv, dim=1))
        }
        return output

# -------------------------- #
#     5. iterative pf       #
# -------------------------- #
class IterGCN(nn.Module):
    def __init__(self, 
                 hidden_channels, 
                 num_block, 
                 with_norm,
                 num_loops_train, 
                 scaling_factor_vm, 
                 scaling_factor_va, 
                 loss_type,
                 batch_size, **kwargs):
        super(IterGCN, self).__init__()
        # param
        self.scaling_factor_vm = scaling_factor_vm
        self.scaling_factor_va = scaling_factor_va
        self.num_loops = num_loops_train

        # model
        self.net = PFNet(hidden_channels=hidden_channels, 
                         num_block=num_block, 
                         with_norm=with_norm, 
                         batch_size=batch_size, 
                         dropout_ratio=kwargs.get("dropout_ratio", 0.1), 
                         heads_ca=kwargs.get("heads_ca", 4),
                         layers_per_graph=kwargs.get("layers_per_graph", 2),
                         flag_use_edge_feat=kwargs.get("flag_use_edge_feat", False),
                         num_timesteps=kwargs.get("num_timesteps", 2),
                         lambda_reg=kwargs.get("lambda_reg", 0.001)
                    )
        
        # include a ema model for better I/O
        self.ema_warmup_epoch = kwargs.get("ema_warmup_epoch", 0)
        self.ema_decay_param = kwargs.get("ema_decay_param", 0.99)
        self.flag_use_ema = kwargs.get("flag_use_ema", False)
        if self.flag_use_ema:
            # Ensure EMA model has the same parameters as the main model
            self.ema_model = PFNet(hidden_channels=hidden_channels, 
                            num_block=num_block, 
                            with_norm=with_norm, 
                            batch_size=batch_size, 
                            dropout_ratio=kwargs.get("dropout_ratio", 0.1), 
                            heads_ca=kwargs.get("heads_ca", 4),
                            layers_per_graph=kwargs.get("layers_per_graph", 2),
                            flag_use_edge_feat=kwargs.get("flag_use_edge_feat", False),
                            num_timesteps=kwargs.get("num_timesteps", 2),
                            lambda_reg=kwargs.get("lambda_reg", 0.001)
                        )

            for p in self.ema_model.parameters():
                p.requires_grad = False
        else:
            self.ema_model = None

        # loss
        if loss_type == 'l1':
            self.critien = nn.L1Loss()
        elif loss_type == 'smooth_l1':
            self.critien = nn.SmoothL1Loss()
        elif loss_type == 'l2':
            self.critien = nn.MSELoss()
        elif loss_type == 'l3':
            self.critien = nn.HuberLoss()   
        else:
            raise TypeError(f"no such loss type: {loss_type}")

        # loss weights
        self.flag_weighted_loss = kwargs.get("flag_weighted_loss", False)
        self.loss_weight_equ = kwargs.get("loss_weight_equ", 1.0)
        self.loss_weight_vm = kwargs.get("loss_weight_vm", 1.0)
        self.loss_weight_va = kwargs.get("loss_weight_va", 1.0)

    def update_ema_model(self, epoch, i_iter, len_loader):
        if not self.flag_use_ema:
            return 
        
        # update teacher model with EMA
        with torch.no_grad():
            if epoch > self.ema_warmup_epoch:
                ema_decay = min(
                    1
                    - 1
                    / (
                        i_iter
                        - len_loader * self.ema_warmup_epoch
                        + 1
                    ),
                    self.ema_decay_param,
                )
            else:
                ema_decay = 0.0

            # update weight with safety check for parameter shape mismatches
            for param_train, param_eval in zip(self.net.parameters(), self.ema_model.parameters()):
                # Skip if shapes don't match
                if param_train.data.shape != param_eval.data.shape:
                    print(f"Warning: Parameter shape mismatch - train: {param_train.data.shape}, ema: {param_eval.data.shape}")
                    continue
                param_eval.data = param_eval.data * ema_decay + param_train.data * (1 - ema_decay)
            
            # update bn with safety check
            for buffer_train, buffer_eval in zip(self.net.buffers(), self.ema_model.buffers()):
                # Skip if shapes don't match
                if buffer_train.data.shape != buffer_eval.data.shape:
                    print(f"Warning: Buffer shape mismatch - train: {buffer_train.data.shape}, ema: {buffer_eval.data.shape}")
                    continue
                buffer_eval.data = buffer_eval.data * ema_decay + buffer_train.data * (1 - ema_decay)


    def forward(self, batch, flag_return_losses=False, flag_use_ema_infer=False, num_loop_infer=0):
        # get size
        num_PQ = batch['PQ'].x.shape[0]
        num_PV = batch['PV'].x.shape[0]
        num_Slack = batch['Slack'].x.shape[0]
        Vm, Va, P_net, Q_net, Gs, Bs = 0, 1, 2, 3, 4, 5

        # use different loops during inference phase
        if num_loop_infer < 1:
            num_loops = self.num_loops
        else:
            num_loops = num_loop_infer
        
        # whether use ema model for inference
        if not self.flag_use_ema:
            flag_use_ema_infer = False

        # loss record
        loss = 0.0
        res_dict = {"loss_equ": 0.0, "loss_pq_vm": 0.0, "loss_pq_va": 0.0, "loss_pv_va": 0.0, "loss_temporal_reg": 0.0}
        Ybus = create_Ybus(batch.detach())
        delta_p, delta_q = deltapq_loss(batch, Ybus)

        # Initialize current_output before the loop
        current_output = None
        
        # iterative loops
        for i in range(num_loops):
            # ----------- updated input ------------
            cur_batch = batch.clone()

            # use ema for better iterative fittings
            if self.flag_use_ema and i > 0 and not flag_use_ema_infer and current_output is not None:
                # Store current batch for EMA model
                cur_batch_hist = cur_batch.clone().detach()
                
                self.ema_model.eval()
                with torch.no_grad():
                    output_ema = self.ema_model(cur_batch_hist)
                
                # Update current batch with EMA predictions
                cur_batch['PV'].x[:, Va] = cur_batch['PV'].x[:, Va] - current_output['PV'][:, Va] * self.scaling_factor_va + output_ema['PV'][:, Va] * self.scaling_factor_va
                cur_batch['PQ'].x[:, Vm] = cur_batch['PQ'].x[:, Vm] - current_output['PQ'][:, Vm] * self.scaling_factor_vm + output_ema['PQ'][:, Vm] * self.scaling_factor_vm
                cur_batch['PQ'].x[:, Va] = cur_batch['PQ'].x[:, Va] - current_output['PQ'][:, Va] * self.scaling_factor_va + output_ema['PQ'][:, Va] * self.scaling_factor_va

                delta_p, delta_q = deltapq_loss(cur_batch, Ybus)
                self.ema_model.train()

            # update the inputs --- use deltap and deltaq
            cur_batch['PQ'].x[:, P_net] = delta_p[:num_PQ]  # deltap
            cur_batch['PQ'].x[:, Q_net] = delta_q[:num_PQ]  # deltaq
            cur_batch['PV'].x[:, P_net] = delta_p[num_PQ:num_PQ+num_PV]
            cur_batch = cur_batch.detach()
            cur_batch_hist = cur_batch.clone().detach()
            
            # ----------- forward ------------
            if flag_use_ema_infer:
                output = self.ema_model(cur_batch)
            else:
                output = self.net(cur_batch)
                
            # Store output for next iteration's EMA update
            if self.flag_use_ema and not flag_use_ema_infer:
                # Save current output for next iteration
                current_output = {k: v.clone().detach() for k, v in output.items() if isinstance(v, torch.Tensor)}

            # --------------- update vm and va --------------
            batch['PV'].x[:, Va] += output['PV'][:, Va] * self.scaling_factor_va
            batch['PQ'].x[:, Vm] += output['PQ'][:, Vm] * self.scaling_factor_vm
            batch['PQ'].x[:, Va] += output['PQ'][:, Va] * self.scaling_factor_va

            # --------------- calculate loss --------------
            delta_p, delta_q = deltapq_loss(batch, Ybus)

            equ_loss = self.critien(delta_p[:num_PQ+num_PV],
                                    torch.zeros_like(delta_p[:num_PQ+num_PV]))\
                    + self.critien(delta_q[:num_PQ][batch['PQ'].q_mask],
                                    torch.zeros_like(delta_q[:num_PQ][batch['PQ'].q_mask]))
            
            pq_vm_loss = self.critien(batch['PQ'].x[:,Vm], batch['PQ'].y[:,Vm])
            pv_va_loss = self.critien(batch['PV'].x[:,Va], batch['PV'].y[:,Va])
            pq_va_loss = self.critien(batch['PQ'].x[:,Va], batch['PQ'].y[:,Va])
            
            # Add temporal regularization loss if available
            # Get device from one of the tensors in the batch
            device = batch['PQ'].x.device if 'PQ' in batch else next(iter(batch.x_dict.values())).device
            temporal_reg_loss = torch.tensor(0.0, device=device)
            if hasattr(cur_batch, 'temporal_reg_loss'):
                temporal_reg_loss = cur_batch.temporal_reg_loss

            if flag_return_losses:
                res_dict['loss_equ'] += equ_loss.cpu().item()
                res_dict['loss_pq_vm'] += pq_vm_loss.cpu().item()
                res_dict['loss_pq_va'] += pq_va_loss.cpu().item()
                res_dict['loss_pv_va'] += pv_va_loss.cpu().item()
                res_dict['loss_temporal_reg'] += temporal_reg_loss.cpu().item()
            
            if self.flag_weighted_loss:
                loss = loss + equ_loss * self.loss_weight_equ + pq_vm_loss * self.loss_weight_vm + (pv_va_loss + pq_va_loss) * self.loss_weight_va + temporal_reg_loss
            else:
                loss = loss + equ_loss + pq_vm_loss + pv_va_loss + pq_va_loss + temporal_reg_loss
            

        batch['PQ'].x[~batch['PQ'].q_mask, Q_net] = -delta_q[:num_PQ][~batch['PQ'].q_mask]
        batch['PV'].x[:, Q_net] = -delta_q[num_PQ:num_PQ+num_PV]
        batch['Slack'].x[:, P_net] = -delta_p[num_PQ+num_PV:num_PQ+num_PV+num_Slack]
        batch['Slack'].x[:, Q_net] = -delta_q[num_PQ+num_PV:num_PQ+num_PV+num_Slack]

        if flag_return_losses:
            return batch, loss, res_dict
        return batch, loss


# torch.autograd.set_detect_anomaly(True)
class SubclassOven(Oven):
    def __init__(self, cfg, log_dir):
        super(SubclassOven,self).__init__(cfg)
        self.cfg = cfg
        self.ngpus = cfg.get('ngpus', 1)
        if self.ngpus == 0:
            self.device = 'cpu'
        else:
            self.device = 'cuda'
        if (not self.cfg['distributed']) or (self.cfg['distributed'] and dist.get_rank() == 0):
            self.reporter = Reporter(cfg, log_dir)
        self.matrix = self._init_matrix()
        self.train_loader, self.valid_loader = self._init_data()
        self.criterion = self._init_criterion()
        self.model = self._init_model()
        self.optim, self.scheduler = self._init_optim()
        checkpt_path = self.cfg['model'].get("resume_ckpt_path", "")
        # self.resume_training = True if os.path.exists(os.path.join(self.cfg['log_path'], 'ckpt_latest.pt')) else False
        self.resume_training = True if os.path.exists(checkpt_path) else False
        self.checkpt_path = checkpt_path
        # using ema info
        self.flag_use_ema_model = self.cfg['model'].get("flag_use_ema", False)
        
    def _init_matrix(self):
        if self.cfg['model']['matrix'] == 'vm_va':
            return vm_va_matrix
        else:
            raise TypeError(f"No such of matrix {self.cfg['model']['matrix']}")

    def _init_model(self):        
        model = IterGCN(**self.cfg['model'])
        model = model.to(self.device)
        return model
    
    def _init_criterion(self):
        if self.cfg['loss']['type'] == "deltapq_loss":
            return deltapq_loss
        elif self.cfg['loss']['type'] == "bi_deltapq_loss":
            return bi_deltapq_loss
        else:
            raise TypeError(f"No such of loss {self.cfg['loss']['type']}")
        
    def exec_epoch(self, epoch, flag, flag_infer_ema=False):
        flag_return_losses = self.cfg.get("flag_return_losses", False)
        if flag == 'train':
            if (not self.cfg['distributed']) or (self.cfg['distributed'] and dist.get_rank() == 0):
                logger.info(f'-------------------- Epoch: {epoch+1} --------------------')
            self.model.train()
            if self.cfg['distributed']:
                self.train_loader.sampler.set_epoch(epoch)
            
            # record vars
            train_loss = AVGMeter()
            train_matrix = dict()
            total_batch = len(self.train_loader)
            print_period = self.cfg['train'].get('logs_freq', 8)
            print_freq = total_batch // print_period 
            print_freq_lst = [i * print_freq for i in range(1, print_period)] + [total_batch - 1]
            
            # start loops
            for batch_id, batch in enumerate(self.train_loader):
                # data
                batch.to(self.device, non_blocking=True)
                
                # forward
                self.optim.zero_grad()
                if flag_return_losses:
                    pred, loss, record_losses = self.model(batch, flag_return_losses=True)
                else:
                    pred, loss = self.model(batch)

                # records
                cur_matrix = self.matrix(pred)
                if (not self.cfg['distributed']) or (self.cfg['distributed'] and dist.get_rank() == 0):
                    # logger.info(f"Iter:{batch_id}/{total_batch} - {str(cur_matrix)}")
                    # print(cur_matrix)
                    pass
                if batch_id == 0:
                    for key in cur_matrix:
                        train_matrix[key] = AVGMeter()

                for key in cur_matrix:
                    train_matrix[key].update(cur_matrix[key])
                
                # backwards
                loss.backward()
                clip_grad_norm_(self.model.parameters(), 1.0)
                self.optim.step()
                train_loss.update(loss.item())

                # update ema
                if self.flag_use_ema_model:
                    if self.cfg['distributed']:
                        self.model.module.update_ema_model(epoch, batch_id + epoch * total_batch, total_batch)
                    else:
                        self.model.update_ema_model(epoch, batch_id + epoch * total_batch, total_batch)

                # print stats
                if (batch_id in print_freq_lst) or ((batch_id + 1) == total_batch):
                    if self.cfg['distributed']:
                        if dist.get_rank() == 0:
                            if flag_return_losses:
                                ret_loss_str = " ".join(["{}:{:.5f}".format(x, y) for x,y in record_losses.items()])
                                logger.info(f"Epoch[{str(epoch+1).zfill(3)}/{self.cfg['train']['epochs']}], iter[{str(batch_id+1).zfill(3)}/{total_batch}], loss_total:{loss.item():.5f}, {ret_loss_str}")
                            else:
                                logger.info(f"Epoch[{str(epoch+1).zfill(3)}/{self.cfg['train']['epochs']}], iter[{str(batch_id+1).zfill(3)}/{total_batch}], loss_total:{loss.item():.5f}")
                    else:
                        if flag_return_losses:
                            ret_loss_str = " ".join(["{}:{:.5f}".format(x, y) for x,y in record_losses.items()])
                            logger.info(f"Epoch[{str(epoch+1).zfill(3)}/{self.cfg['train']['epochs']}], iter[{str(batch_id+1).zfill(3)}/{total_batch}], loss_total:{loss.item():.5f}, {ret_loss_str}")
                        else:
                            logger.info(f"Epoch[{str(epoch+1).zfill(3)}/{self.cfg['train']['epochs']}], iter[{str(batch_id+1).zfill(3)}/{total_batch}], loss_total:{loss.item():.5f}")
            return train_loss, train_matrix
        elif flag == 'valid':
            n_loops_test = self.cfg['model'].get("num_loops_test", 1)
            self.model.eval()
            if self.cfg['distributed']:
                world_size = dist.get_world_size()
                self.valid_loader.sampler.set_epoch(epoch)

            valid_loss = AVGMeter()
            val_matrix = dict()
            # start data loops
            with torch.no_grad():
                for batch_id, batch in enumerate(self.valid_loader):
                    batch.to(self.device)
                    if self.flag_use_ema_model:
                        pred, loss = self.model(batch, num_loop_infer=n_loops_test, flag_use_ema_infer=flag_infer_ema)
                    else:
                        pred, loss = self.model(batch, num_loop_infer=n_loops_test)
                    cur_matrix = self.matrix(pred, mode='val')
                    # collect performance 1 --- matrix
                    if self.cfg['distributed']:
                        # get all res from multiple gpus 
                        for key in cur_matrix:
                            # tmp_value = cur_matrix[key].clone().detach().requires_grad_(False).cuda()
                            tmp_value = torch.tensor(cur_matrix[key]).cuda()
                            dist.all_reduce(tmp_value)
                            cur_matrix[key] = tmp_value.cpu().item() / world_size
                    if batch_id == 0: # record into val_matrix
                        for key in cur_matrix:
                            val_matrix[key] = AVGMeter()
                    for key in cur_matrix:
                            val_matrix[key].update(cur_matrix[key])
                    # collect performance 2 --- loss
                    if self.cfg['distributed']:
                        tmp_loss = loss.clone().detach()
                        dist.all_reduce(tmp_loss)
                        valid_loss.update(tmp_loss.cpu().item() / world_size)
                    else:
                        valid_loss.update(loss.cpu().item())
            
            return valid_loss, val_matrix
        else:
            raise ValueError(f'flag == {flag} not support, choice[train, valid]')

    
    def train(self):
        if self.ngpus > 1:
            dummy_batch_data = next(iter(self.train_loader))
            dummy_batch_data.to(self.device, non_blocking=True)
            with torch.no_grad():
                if self.flag_use_ema_model:
                    _ = self.model(dummy_batch_data, num_loop_infer=1)
                    _ = self.model(dummy_batch_data, num_loop_infer=1, flag_use_ema_infer=True)
                else:
                    _ = self.model(dummy_batch_data, num_loop_infer=1)
            
            if (not self.cfg['distributed']) or (self.cfg['distributed'] and dist.get_rank() == 0):
                logger.info(f'==================== Total number of parameters: {count_parameters(self.model):.3f}M')

            local_rank = int(os.environ["LOCAL_RANK"])
            self.model = torch.nn.parallel.DistributedDataParallel(
                self.model,
                device_ids=[local_rank],
                output_device=local_rank,
                find_unused_parameters=True,
                #  find_unused_parameters=False
            )
        else:
            dummy_batch_data = next(iter(self.train_loader))
            dummy_batch_data.to(self.device, non_blocking=True)
            with torch.no_grad():
                # _ = self.model(dummy_batch_data, num_loop_infer=1)
                if self.flag_use_ema_model:
                    _ = self.model(dummy_batch_data, num_loop_infer=1)
                    _ = self.model(dummy_batch_data, num_loop_infer=1, flag_use_ema_infer=True)
                else:
                    _ = self.model(dummy_batch_data, num_loop_infer=1)
            logger.info(f'==================== Total number of parameters: {count_parameters(self.model):.3f}M')

        
        if not self.resume_training:    
            self.perform_best = np.Infinity
            self.perform_best_ep = -1
            self.start_epoch = 0
            self.perform_best_metrics = {}
        else:
            self.perform_best, self.perform_best_ep, self.start_epoch, self.perform_best_metrics = self._init_training_wt_checkpoint(self.checkpt_path)
        
        local_best = self.perform_best
        local_best_ep = self.perform_best_ep
        local_best_metrics = self.perform_best_metrics
        if self.flag_use_ema_model:
            local_best_ema = self.perform_best
            local_best_ep_ema = self.perform_best_ep
            local_best_metrics_ema =self.perform_best_metrics
        for epoch in range(self.start_epoch, self.cfg['train']['epochs']):
            with Timer(rest_epochs=self.cfg['train']['epochs'] - (epoch + 1)) as timer:
                train_loss, train_matrix = self.exec_epoch(epoch, flag='train')
                valid_loss, val_matrix = self.exec_epoch(epoch, flag='valid')
                if self.flag_use_ema_model:
                    valid_loss_ema, valid_matrix_ema = self.exec_epoch(epoch, flag='valid', 
                                                             flag_infer_ema=True)
                if self.scheduler:
                    if isinstance(self.scheduler, ReduceLROnPlateau):
                        self.scheduler.step(valid_loss.agg())
                    else:
                        self.scheduler.step()
            if self.flag_use_ema_model:
                local_best, local_best_ep, local_best_ema, local_best_ep_ema,local_best_metrics_ema = self.summary_epoch(epoch,
                                            train_loss, train_matrix,
                                            valid_loss, val_matrix,
                                            timer, local_best, local_best_ep, local_best_metrics,
                                            local_best_ema=local_best_ema, 
                                            local_best_ep_ema=local_best_ep_ema,
                                            local_best_metrics_ema = local_best_metrics_ema,
                                            valid_loss_ema=valid_loss_ema, 
                                            val_matrix_ema=valid_matrix_ema)
            else:
                local_best, local_best_ep, local_best_metrics = self.summary_epoch(epoch,
                                            train_loss, train_matrix,
                                            valid_loss, val_matrix,
                                            timer, 
                                            local_best, local_best_ep,local_best_metrics)

        if (not self.cfg['distributed']) or (self.cfg['distributed'] and dist.get_rank() == 0):
            self.reporter.close()
        return local_best_ep_ema,local_best_metrics_ema

if __name__ == "__main__":
    str2bool = lambda x: x.lower() == 'true'
    parser = argparse.ArgumentParser()
    parser.add_argument("--out_dir", type=str, default="run_0")
    parser.add_argument('--config', type=str, default='./configs/default.yaml')
    parser.add_argument('--distributed', default=False, action='store_true')
    parser.add_argument('--local-rank', default=0, type=int, help='node rank for distributed training')
    parser.add_argument("--seed", type=int, default=2024)
    parser.add_argument("--ngpus", type=int, default=1)
    parser.add_argument("--num_timesteps", type=int, default=2, help="Number of timesteps for SRT-GT")
    parser.add_argument("--lambda_reg", type=float, default=0.0005, help="Regularization weight for temporal smoothness")
    args = parser.parse_args()
    try:
        with open(args.config, 'r') as file:
            cfg = yaml.safe_load(file)
        for key, value in vars(args).items():
            if value is not None:
                cfg[key] = value
        cfg['log_path'] = os.path.join(cfg['log_path'], os.path.basename(args.config)[:-5])
        metadata = (cfg['data']['meta']['node'],
                    list(map(tuple, cfg['data']['meta']['edge'])))
        set_random_seed(cfg["seed"] if cfg["seed"] > 0 else 1, deterministic=False)
        if cfg['distributed']:
            rank, word_size = setup_distributed()
            if not os.path.exists(cfg["log_path"]) and rank == 0:
                os.makedirs(cfg["log_path"])
            if rank == 0:
                # curr_timestr = setup_default_logging(cfg["log_path"], False)
                curr_timestr = setup_default_logging_wt_dir(cfg["log_path"])
                cfg["log_path"] = os.path.join(cfg["log_path"], curr_timestr)
                os.makedirs(cfg["log_path"], exist_ok=True)
                csv_path = os.path.join(cfg["log_path"], "out_stat.csv")

                from shutil import copyfile
                output_yaml = os.path.join(cfg["log_path"], "config.yaml")
                copyfile(cfg['config'], output_yaml) 
            else:
                csv_path = None
            if rank == 0:
                logger.info("\n{}".format(pprint.pformat(cfg)))
            # make sure all folder are correctly created at rank == 0
            dist.barrier()
        else:
            if not os.path.exists(cfg["log_path"]):
                os.makedirs(cfg["log_path"])
            # curr_timestr = setup_default_logging(cfg["log_path"], False)
            curr_timestr = setup_default_logging_wt_dir(cfg["log_path"])
            cfg["log_path"] = os.path.join(cfg["log_path"], curr_timestr)
            os.makedirs(cfg["log_path"], exist_ok=True)
            csv_path = os.path.join(cfg["log_path"], "info_{}_stat.csv".format(curr_timestr))

            from shutil import copyfile
            output_yaml = os.path.join(cfg["log_path"], "config.yaml")
            copyfile(cfg['config'], output_yaml)

            logger.info("\n{}".format(pprint.pformat(cfg)))
        log_dir = os.path.join(args.out_dir, 'logs')
        pathlib.Path(log_dir).mkdir(parents=True, exist_ok=True)
        oven = SubclassOven(cfg, log_dir)
        local_best_ep_ema,local_best_metrics_ema = oven.train()
        local_best_metrics_ema.update({"epoch":local_best_ep_ema})
        final_infos = {
            "IEEE39":{
                "means": local_best_metrics_ema
            }
        }
        pathlib.Path(args.out_dir).mkdir(parents=True, exist_ok=True)
        with open(os.path.join(args.out_dir, "final_info.json"), "w") as f:
            json.dump(final_infos, f)
    except Exception as e:
        print("Original error in subprocess:", flush=True)
        traceback.print_exc(file=open(os.path.join(args.out_dir, "traceback.log"), "w"))
        raise