File size: 11,923 Bytes
62a2f1c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
import _init_path
import argparse
import datetime
import glob
import os
import json
from pathlib import Path
import torch
import torch.nn as nn
from tensorboardX import SummaryWriter
from pcdet.config import cfg, cfg_from_list, cfg_from_yaml_file, log_config_to_file
from pcdet.datasets import build_dataloader
from pcdet.models import build_network, model_fn_decorator
from pcdet.utils import common_utils
from train_utils.optimization import build_optimizer, build_scheduler
from train_utils.train_utils import train_model
from eval_utils import eval_utils
def parse_config():
parser = argparse.ArgumentParser(description='arg parser')
parser.add_argument('--cfg_file', type=str, default=None, help='specify the config for training')
parser.add_argument('--batch_size', type=int, default=None, required=False, help='batch size for training')
parser.add_argument('--epochs', type=int, default=None, required=False, help='number of epochs to train for')
parser.add_argument('--workers', type=int, default=4, help='number of workers for dataloader')
parser.add_argument('--extra_tag', type=str, default='default', help='extra tag for this experiment')
parser.add_argument('--ckpt', type=str, default=None, help='checkpoint to start from')
parser.add_argument('--pretrained_model', type=str, default=None, help='pretrained_model')
parser.add_argument('--launcher', choices=['none', 'pytorch', 'slurm'], default='none')
parser.add_argument('--tcp_port', type=int, default=18888, help='tcp port for distrbuted training')
parser.add_argument('--sync_bn', action='store_true', default=False, help='whether to use sync bn')
parser.add_argument('--fix_random_seed', action='store_true', default=False, help='')
parser.add_argument('--ckpt_save_interval', type=int, default=1, help='number of training epochs')
parser.add_argument('--local-rank', '--local_rank', type=int, default=None, help='local rank for distributed training')
parser.add_argument('--max_ckpt_save_num', type=int, default=30, help='max number of saved checkpoint')
parser.add_argument('--merge_all_iters_to_one_epoch', action='store_true', default=False, help='')
parser.add_argument('--set', dest='set_cfgs', default=None, nargs=argparse.REMAINDER,
help='set extra config keys if needed')
parser.add_argument('--max_waiting_mins', type=int, default=0, help='max waiting minutes')
parser.add_argument('--start_epoch', type=int, default=0, help='')
parser.add_argument('--num_epochs_to_eval', type=int, default=0, help='number of checkpoints to be evaluated')
parser.add_argument('--save_to_file', action='store_true', default=False, help='')
parser.add_argument('--use_tqdm_to_record', action='store_true', default=False, help='if True, the intermediate losses will not be logged to file, only tqdm will be used')
parser.add_argument('--logger_iter_interval', type=int, default=50, help='')
parser.add_argument('--ckpt_save_time_interval', type=int, default=300, help='in terms of seconds')
parser.add_argument('--wo_gpu_stat', action='store_true', help='')
parser.add_argument('--use_amp', action='store_true', help='use mix precision training')
parser.add_argument('--out_dir', type=str, default='run_0', help='path to save final info')
args = parser.parse_args()
cfg_from_yaml_file(args.cfg_file, cfg)
cfg.TAG = Path(args.cfg_file).stem
cfg.EXP_GROUP_PATH = '/'.join(args.cfg_file.split('/')[1:-1]) # remove 'cfgs' and 'xxxx.yaml'
args.use_amp = args.use_amp or cfg.OPTIMIZATION.get('USE_AMP', False)
if args.set_cfgs is not None:
cfg_from_list(args.set_cfgs, cfg)
return args, cfg
def eval_model(model, test_loader, args, eval_output_dir, logger, epoch_id, dist_test=False):
model.load_params_from_file(filename=args.ckpt, logger=logger, to_cpu=dist_test)
model.cuda()
eval_dict = eval_utils.eval_one_epoch(
cfg, args, model, test_loader, epoch_id, logger, dist_test=dist_test,
result_dir=eval_output_dir
)
print(eval_dict)
return eval_dict
def main():
args, cfg = parse_config()
if args.launcher == 'none':
dist_train = False
total_gpus = 1
else:
if args.local_rank is None:
args.local_rank = int(os.environ.get('LOCAL_RANK', '0'))
total_gpus, cfg.LOCAL_RANK = getattr(common_utils, 'init_dist_%s' % args.launcher)(
args.tcp_port, args.local_rank, backend='nccl'
)
dist_train = True
if args.batch_size is None:
args.batch_size = cfg.OPTIMIZATION.BATCH_SIZE_PER_GPU
else:
assert args.batch_size % total_gpus == 0, 'Batch size should match the number of gpus'
args.batch_size = args.batch_size // total_gpus
args.epochs = cfg.OPTIMIZATION.NUM_EPOCHS if args.epochs is None else args.epochs
if args.fix_random_seed:
common_utils.set_random_seed(666 + cfg.LOCAL_RANK)
output_dir = cfg.ROOT_DIR / 'output' / cfg.EXP_GROUP_PATH / cfg.TAG / args.extra_tag
ckpt_dir = output_dir / 'ckpt'
output_dir.mkdir(parents=True, exist_ok=True)
ckpt_dir.mkdir(parents=True, exist_ok=True)
log_file = output_dir / ('train_%s.log' % datetime.datetime.now().strftime('%Y%m%d-%H%M%S'))
logger = common_utils.create_logger(log_file, rank=cfg.LOCAL_RANK)
# log to file
logger.info('**********************Start logging**********************')
gpu_list = os.environ['CUDA_VISIBLE_DEVICES'] if 'CUDA_VISIBLE_DEVICES' in os.environ.keys() else 'ALL'
logger.info('CUDA_VISIBLE_DEVICES=%s' % gpu_list)
if dist_train:
logger.info('Training in distributed mode : total_batch_size: %d' % (total_gpus * args.batch_size))
else:
logger.info('Training with a single process')
for key, val in vars(args).items():
logger.info('{:16} {}'.format(key, val))
log_config_to_file(cfg, logger=logger)
if cfg.LOCAL_RANK == 0:
os.system('cp %s %s' % (args.cfg_file, output_dir))
tb_log = SummaryWriter(log_dir=str(output_dir / 'tensorboard')) if cfg.LOCAL_RANK == 0 else None
logger.info("----------- Create dataloader & network & optimizer -----------")
train_set, train_loader, train_sampler = build_dataloader(
dataset_cfg=cfg.DATA_CONFIG,
class_names=cfg.CLASS_NAMES,
batch_size=args.batch_size,
dist=dist_train, workers=args.workers,
logger=logger,
training=True,
merge_all_iters_to_one_epoch=args.merge_all_iters_to_one_epoch,
total_epochs=args.epochs,
seed=666 if args.fix_random_seed else None
)
model = build_network(model_cfg=cfg.MODEL, num_class=len(cfg.CLASS_NAMES), dataset=train_set)
if args.sync_bn:
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
model.cuda()
optimizer = build_optimizer(model, cfg.OPTIMIZATION)
# load checkpoint if it is possible
start_epoch = it = 0
last_epoch = -1
if args.pretrained_model is not None:
model.load_params_from_file(filename=args.pretrained_model, to_cpu=dist_train, logger=logger)
if args.ckpt is not None:
it, start_epoch = model.load_params_with_optimizer(args.ckpt, to_cpu=dist_train, optimizer=optimizer, logger=logger)
last_epoch = start_epoch + 1
else:
ckpt_list = glob.glob(str(ckpt_dir / '*.pth'))
if len(ckpt_list) > 0:
ckpt_list.sort(key=os.path.getmtime)
while len(ckpt_list) > 0:
try:
it, start_epoch = model.load_params_with_optimizer(
ckpt_list[-1], to_cpu=dist_train, optimizer=optimizer, logger=logger
)
last_epoch = start_epoch + 1
break
except:
ckpt_list = ckpt_list[:-1]
model.train() # before wrap to DistributedDataParallel to support fixed some parameters
if dist_train:
model = nn.parallel.DistributedDataParallel(model, device_ids=[cfg.LOCAL_RANK % torch.cuda.device_count()])
logger.info(f'----------- Model {cfg.MODEL.NAME} created, param count: {sum([m.numel() for m in model.parameters()])} -----------')
logger.info(model)
lr_scheduler, lr_warmup_scheduler = build_scheduler(
optimizer, total_iters_each_epoch=len(train_loader), total_epochs=args.epochs,
last_epoch=last_epoch, optim_cfg=cfg.OPTIMIZATION
)
# -----------------------start training---------------------------
logger.info('**********************Start training %s/%s(%s)**********************'
% (cfg.EXP_GROUP_PATH, cfg.TAG, args.extra_tag))
train_model(
model,
optimizer,
train_loader,
model_func=model_fn_decorator(),
lr_scheduler=lr_scheduler,
optim_cfg=cfg.OPTIMIZATION,
start_epoch=start_epoch,
total_epochs=args.epochs,
start_iter=it,
rank=cfg.LOCAL_RANK,
tb_log=tb_log,
ckpt_save_dir=ckpt_dir,
train_sampler=train_sampler,
lr_warmup_scheduler=lr_warmup_scheduler,
ckpt_save_interval=args.ckpt_save_interval,
max_ckpt_save_num=args.max_ckpt_save_num,
merge_all_iters_to_one_epoch=args.merge_all_iters_to_one_epoch,
logger=logger,
logger_iter_interval=args.logger_iter_interval,
ckpt_save_time_interval=args.ckpt_save_time_interval,
use_logger_to_record=not args.use_tqdm_to_record,
show_gpu_stat=not args.wo_gpu_stat,
use_amp=args.use_amp,
cfg=cfg
)
if hasattr(train_set, 'use_shared_memory') and train_set.use_shared_memory:
train_set.clean_shared_memory()
logger.info('**********************End training %s/%s(%s)**********************\n\n\n'
% (cfg.EXP_GROUP_PATH, cfg.TAG, args.extra_tag))
if cfg.LOCAL_RANK == 0:
logger.info('**********************Start evaluation %s/%s(%s)**********************' %
(cfg.EXP_GROUP_PATH, cfg.TAG, args.extra_tag))
test_set, test_loader, sampler = build_dataloader(
dataset_cfg=cfg.DATA_CONFIG,
class_names=cfg.CLASS_NAMES,
batch_size=args.batch_size,
dist=False, workers=args.workers, logger=logger, training=False
)
eval_output_dir = output_dir / 'eval' / 'eval_with_train'
eval_output_dir.mkdir(parents=True, exist_ok=True)
args.eval_epoch = max(args.epochs - args.num_epochs_to_eval, 0) # Only evaluate the last args.num_epochs_to_eval epochs
# print(args.out_dir)
if not os.path.exists(args.out_dir):
os.makedirs(args.out_dir)
eval_ckpt = os.path.join(ckpt_dir, f"checkpoint_epoch_{args.eval_epoch}.pth")
print(eval_ckpt)
args.ckpt = eval_ckpt
result_dict = eval_model(
model.module if dist_train else model,
test_loader, args, eval_output_dir, logger, args.eval_epoch, dist_test=False
)
print(result_dict.keys())
final_infos = {
"Once": {
"means": {
"mAP": result_dict['AP_mean/overall'],
"mAP_vehicle": result_dict['AP_Vehicle/overall'],
"mAP_pedestrian": result_dict['AP_Pedestrian/overall'],
"mAP_cyclist": result_dict['AP_Cyclist/overall']
}
}
}
if not os.path.exists(args.out_dir): os.makedirs(args.out_dir)
with open(os.path.join(args.out_dir, 'final_info.json'), 'w') as f:
json.dump(final_infos, f, indent=4)
logger.info('**********************End evaluation %s/%s(%s)**********************' %
(cfg.EXP_GROUP_PATH, cfg.TAG, args.extra_tag))
if __name__ == '__main__':
main()
|