File size: 8,588 Bytes
62a2f1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
import logging
import os
import pickle
import random
import shutil
import subprocess
import SharedArray

import numpy as np
import torch
import torch.distributed as dist
import torch.multiprocessing as mp


def check_numpy_to_torch(x):
    if isinstance(x, np.ndarray):
        return torch.from_numpy(x).float(), True
    return x, False


def limit_period(val, offset=0.5, period=np.pi):
    val, is_numpy = check_numpy_to_torch(val)
    ans = val - torch.floor(val / period + offset) * period
    return ans.numpy() if is_numpy else ans


def drop_info_with_name(info, name):
    ret_info = {}
    keep_indices = [i for i, x in enumerate(info['name']) if x != name]
    for key in info.keys():
        ret_info[key] = info[key][keep_indices]
    return ret_info


def rotate_points_along_z(points, angle):
    """
    Args:
        points: (B, N, 3 + C)
        angle: (B), angle along z-axis, angle increases x ==> y
    Returns:

    """
    points, is_numpy = check_numpy_to_torch(points)
    angle, _ = check_numpy_to_torch(angle)

    cosa = torch.cos(angle)
    sina = torch.sin(angle)
    zeros = angle.new_zeros(points.shape[0])
    ones = angle.new_ones(points.shape[0])
    rot_matrix = torch.stack((
        cosa,  sina, zeros,
        -sina, cosa, zeros,
        zeros, zeros, ones
    ), dim=1).view(-1, 3, 3).float()
    points_rot = torch.matmul(points[:, :, 0:3], rot_matrix)
    points_rot = torch.cat((points_rot, points[:, :, 3:]), dim=-1)
    return points_rot.numpy() if is_numpy else points_rot


def angle2matrix(angle):
    """
    Args:
        angle: angle along z-axis, angle increases x ==> y
    Returns:
        rot_matrix: (3x3 Tensor) rotation matrix
    """

    cosa = torch.cos(angle)
    sina = torch.sin(angle)
    rot_matrix = torch.tensor([
        [cosa, -sina, 0],
        [sina, cosa,  0],
        [   0,    0,  1]
    ])
    return rot_matrix


def mask_points_by_range(points, limit_range):
    mask = (points[:, 0] >= limit_range[0]) & (points[:, 0] <= limit_range[3]) \
           & (points[:, 1] >= limit_range[1]) & (points[:, 1] <= limit_range[4])
    return mask


def get_voxel_centers(voxel_coords, downsample_times, voxel_size, point_cloud_range):
    """
    Args:
        voxel_coords: (N, 3)
        downsample_times:
        voxel_size:
        point_cloud_range:

    Returns:

    """
    assert voxel_coords.shape[1] == 3
    voxel_centers = voxel_coords[:, [2, 1, 0]].float()  # (xyz)
    voxel_size = torch.tensor(voxel_size, device=voxel_centers.device).float() * downsample_times
    pc_range = torch.tensor(point_cloud_range[0:3], device=voxel_centers.device).float()
    voxel_centers = (voxel_centers + 0.5) * voxel_size + pc_range
    return voxel_centers


def create_logger(log_file=None, rank=0, log_level=logging.INFO):
    logger = logging.getLogger(__name__)
    logger.setLevel(log_level if rank == 0 else 'ERROR')
    formatter = logging.Formatter('%(asctime)s  %(levelname)5s  %(message)s')
    console = logging.StreamHandler()
    console.setLevel(log_level if rank == 0 else 'ERROR')
    console.setFormatter(formatter)
    logger.addHandler(console)
    if log_file is not None:
        file_handler = logging.FileHandler(filename=log_file)
        file_handler.setLevel(log_level if rank == 0 else 'ERROR')
        file_handler.setFormatter(formatter)
        logger.addHandler(file_handler)
    logger.propagate = False
    return logger


def set_random_seed(seed):
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    torch.backends.cudnn.deterministic = True
    torch.backends.cudnn.benchmark = False


def worker_init_fn(worker_id, seed=666):
    if seed is not None:
        random.seed(seed + worker_id)
        np.random.seed(seed + worker_id)
        torch.manual_seed(seed + worker_id)
        torch.cuda.manual_seed(seed + worker_id)
        torch.cuda.manual_seed_all(seed + worker_id)


def get_pad_params(desired_size, cur_size):
    """
    Get padding parameters for np.pad function
    Args:
        desired_size: int, Desired padded output size
        cur_size: int, Current size. Should always be less than or equal to cur_size
    Returns:
        pad_params: tuple(int), Number of values padded to the edges (before, after)
    """
    assert desired_size >= cur_size

    # Calculate amount to pad
    diff = desired_size - cur_size
    pad_params = (0, diff)

    return pad_params


def keep_arrays_by_name(gt_names, used_classes):
    inds = [i for i, x in enumerate(gt_names) if x in used_classes]
    inds = np.array(inds, dtype=np.int64)
    return inds


def init_dist_slurm(tcp_port, local_rank, backend='nccl'):
    """
    modified from https://github.com/open-mmlab/mmdetection
    Args:
        tcp_port:
        backend:

    Returns:

    """
    proc_id = int(os.environ['SLURM_PROCID'])
    ntasks = int(os.environ['SLURM_NTASKS'])
    node_list = os.environ['SLURM_NODELIST']
    num_gpus = torch.cuda.device_count()
    torch.cuda.set_device(proc_id % num_gpus)
    addr = subprocess.getoutput('scontrol show hostname {} | head -n1'.format(node_list))
    os.environ['MASTER_PORT'] = str(tcp_port)
    os.environ['MASTER_ADDR'] = addr
    os.environ['WORLD_SIZE'] = str(ntasks)
    os.environ['RANK'] = str(proc_id)
    dist.init_process_group(backend=backend)

    total_gpus = dist.get_world_size()
    rank = dist.get_rank()
    return total_gpus, rank


def init_dist_pytorch(tcp_port, local_rank, backend='nccl'):
    if mp.get_start_method(allow_none=True) is None:
        mp.set_start_method('spawn')
    # os.environ['MASTER_PORT'] = str(tcp_port)
    # os.environ['MASTER_ADDR'] = 'localhost'
    num_gpus = torch.cuda.device_count()
    torch.cuda.set_device(local_rank % num_gpus)

    dist.init_process_group(
        backend=backend,
        # init_method='tcp://127.0.0.1:%d' % tcp_port,
        # rank=local_rank,
        # world_size=num_gpus
    )
    rank = dist.get_rank()
    return num_gpus, rank


def get_dist_info(return_gpu_per_machine=False):
    if torch.__version__ < '1.0':
        initialized = dist._initialized
    else:
        if dist.is_available():
            initialized = dist.is_initialized()
        else:
            initialized = False
    if initialized:
        rank = dist.get_rank()
        world_size = dist.get_world_size()
    else:
        rank = 0
        world_size = 1

    if return_gpu_per_machine:
        gpu_per_machine = torch.cuda.device_count()
        return rank, world_size, gpu_per_machine

    return rank, world_size


def merge_results_dist(result_part, size, tmpdir):
    rank, world_size = get_dist_info()
    os.makedirs(tmpdir, exist_ok=True)

    dist.barrier()
    pickle.dump(result_part, open(os.path.join(tmpdir, 'result_part_{}.pkl'.format(rank)), 'wb'))
    dist.barrier()

    if rank != 0:
        return None

    part_list = []
    for i in range(world_size):
        part_file = os.path.join(tmpdir, 'result_part_{}.pkl'.format(i))
        part_list.append(pickle.load(open(part_file, 'rb')))

    ordered_results = []
    for res in zip(*part_list):
        ordered_results.extend(list(res))
    ordered_results = ordered_results[:size]
    shutil.rmtree(tmpdir)
    return ordered_results


def scatter_point_inds(indices, point_inds, shape):
    ret = -1 * torch.ones(*shape, dtype=point_inds.dtype, device=point_inds.device)
    ndim = indices.shape[-1]
    flattened_indices = indices.view(-1, ndim)
    slices = [flattened_indices[:, i] for i in range(ndim)]
    ret[slices] = point_inds
    return ret


def generate_voxel2pinds(sparse_tensor):
    device = sparse_tensor.indices.device
    batch_size = sparse_tensor.batch_size
    spatial_shape = sparse_tensor.spatial_shape
    indices = sparse_tensor.indices.long()
    point_indices = torch.arange(indices.shape[0], device=device, dtype=torch.int32)
    output_shape = [batch_size] + list(spatial_shape)
    v2pinds_tensor = scatter_point_inds(indices, point_indices, output_shape)
    return v2pinds_tensor


def sa_create(name, var):
    x = SharedArray.create(name, var.shape, dtype=var.dtype)
    x[...] = var[...]
    x.flags.writeable = False
    return x


class AverageMeter(object):
    """Computes and stores the average and current value"""
    def __init__(self):
        self.reset()

    def reset(self):
        self.val = 0
        self.avg = 0
        self.sum = 0
        self.count = 0

    def update(self, val, n=1):
        self.val = val
        self.sum += val * n
        self.count += n
        self.avg = self.sum / self.count