File size: 8,588 Bytes
62a2f1c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 |
import logging
import os
import pickle
import random
import shutil
import subprocess
import SharedArray
import numpy as np
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
def check_numpy_to_torch(x):
if isinstance(x, np.ndarray):
return torch.from_numpy(x).float(), True
return x, False
def limit_period(val, offset=0.5, period=np.pi):
val, is_numpy = check_numpy_to_torch(val)
ans = val - torch.floor(val / period + offset) * period
return ans.numpy() if is_numpy else ans
def drop_info_with_name(info, name):
ret_info = {}
keep_indices = [i for i, x in enumerate(info['name']) if x != name]
for key in info.keys():
ret_info[key] = info[key][keep_indices]
return ret_info
def rotate_points_along_z(points, angle):
"""
Args:
points: (B, N, 3 + C)
angle: (B), angle along z-axis, angle increases x ==> y
Returns:
"""
points, is_numpy = check_numpy_to_torch(points)
angle, _ = check_numpy_to_torch(angle)
cosa = torch.cos(angle)
sina = torch.sin(angle)
zeros = angle.new_zeros(points.shape[0])
ones = angle.new_ones(points.shape[0])
rot_matrix = torch.stack((
cosa, sina, zeros,
-sina, cosa, zeros,
zeros, zeros, ones
), dim=1).view(-1, 3, 3).float()
points_rot = torch.matmul(points[:, :, 0:3], rot_matrix)
points_rot = torch.cat((points_rot, points[:, :, 3:]), dim=-1)
return points_rot.numpy() if is_numpy else points_rot
def angle2matrix(angle):
"""
Args:
angle: angle along z-axis, angle increases x ==> y
Returns:
rot_matrix: (3x3 Tensor) rotation matrix
"""
cosa = torch.cos(angle)
sina = torch.sin(angle)
rot_matrix = torch.tensor([
[cosa, -sina, 0],
[sina, cosa, 0],
[ 0, 0, 1]
])
return rot_matrix
def mask_points_by_range(points, limit_range):
mask = (points[:, 0] >= limit_range[0]) & (points[:, 0] <= limit_range[3]) \
& (points[:, 1] >= limit_range[1]) & (points[:, 1] <= limit_range[4])
return mask
def get_voxel_centers(voxel_coords, downsample_times, voxel_size, point_cloud_range):
"""
Args:
voxel_coords: (N, 3)
downsample_times:
voxel_size:
point_cloud_range:
Returns:
"""
assert voxel_coords.shape[1] == 3
voxel_centers = voxel_coords[:, [2, 1, 0]].float() # (xyz)
voxel_size = torch.tensor(voxel_size, device=voxel_centers.device).float() * downsample_times
pc_range = torch.tensor(point_cloud_range[0:3], device=voxel_centers.device).float()
voxel_centers = (voxel_centers + 0.5) * voxel_size + pc_range
return voxel_centers
def create_logger(log_file=None, rank=0, log_level=logging.INFO):
logger = logging.getLogger(__name__)
logger.setLevel(log_level if rank == 0 else 'ERROR')
formatter = logging.Formatter('%(asctime)s %(levelname)5s %(message)s')
console = logging.StreamHandler()
console.setLevel(log_level if rank == 0 else 'ERROR')
console.setFormatter(formatter)
logger.addHandler(console)
if log_file is not None:
file_handler = logging.FileHandler(filename=log_file)
file_handler.setLevel(log_level if rank == 0 else 'ERROR')
file_handler.setFormatter(formatter)
logger.addHandler(file_handler)
logger.propagate = False
return logger
def set_random_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def worker_init_fn(worker_id, seed=666):
if seed is not None:
random.seed(seed + worker_id)
np.random.seed(seed + worker_id)
torch.manual_seed(seed + worker_id)
torch.cuda.manual_seed(seed + worker_id)
torch.cuda.manual_seed_all(seed + worker_id)
def get_pad_params(desired_size, cur_size):
"""
Get padding parameters for np.pad function
Args:
desired_size: int, Desired padded output size
cur_size: int, Current size. Should always be less than or equal to cur_size
Returns:
pad_params: tuple(int), Number of values padded to the edges (before, after)
"""
assert desired_size >= cur_size
# Calculate amount to pad
diff = desired_size - cur_size
pad_params = (0, diff)
return pad_params
def keep_arrays_by_name(gt_names, used_classes):
inds = [i for i, x in enumerate(gt_names) if x in used_classes]
inds = np.array(inds, dtype=np.int64)
return inds
def init_dist_slurm(tcp_port, local_rank, backend='nccl'):
"""
modified from https://github.com/open-mmlab/mmdetection
Args:
tcp_port:
backend:
Returns:
"""
proc_id = int(os.environ['SLURM_PROCID'])
ntasks = int(os.environ['SLURM_NTASKS'])
node_list = os.environ['SLURM_NODELIST']
num_gpus = torch.cuda.device_count()
torch.cuda.set_device(proc_id % num_gpus)
addr = subprocess.getoutput('scontrol show hostname {} | head -n1'.format(node_list))
os.environ['MASTER_PORT'] = str(tcp_port)
os.environ['MASTER_ADDR'] = addr
os.environ['WORLD_SIZE'] = str(ntasks)
os.environ['RANK'] = str(proc_id)
dist.init_process_group(backend=backend)
total_gpus = dist.get_world_size()
rank = dist.get_rank()
return total_gpus, rank
def init_dist_pytorch(tcp_port, local_rank, backend='nccl'):
if mp.get_start_method(allow_none=True) is None:
mp.set_start_method('spawn')
# os.environ['MASTER_PORT'] = str(tcp_port)
# os.environ['MASTER_ADDR'] = 'localhost'
num_gpus = torch.cuda.device_count()
torch.cuda.set_device(local_rank % num_gpus)
dist.init_process_group(
backend=backend,
# init_method='tcp://127.0.0.1:%d' % tcp_port,
# rank=local_rank,
# world_size=num_gpus
)
rank = dist.get_rank()
return num_gpus, rank
def get_dist_info(return_gpu_per_machine=False):
if torch.__version__ < '1.0':
initialized = dist._initialized
else:
if dist.is_available():
initialized = dist.is_initialized()
else:
initialized = False
if initialized:
rank = dist.get_rank()
world_size = dist.get_world_size()
else:
rank = 0
world_size = 1
if return_gpu_per_machine:
gpu_per_machine = torch.cuda.device_count()
return rank, world_size, gpu_per_machine
return rank, world_size
def merge_results_dist(result_part, size, tmpdir):
rank, world_size = get_dist_info()
os.makedirs(tmpdir, exist_ok=True)
dist.barrier()
pickle.dump(result_part, open(os.path.join(tmpdir, 'result_part_{}.pkl'.format(rank)), 'wb'))
dist.barrier()
if rank != 0:
return None
part_list = []
for i in range(world_size):
part_file = os.path.join(tmpdir, 'result_part_{}.pkl'.format(i))
part_list.append(pickle.load(open(part_file, 'rb')))
ordered_results = []
for res in zip(*part_list):
ordered_results.extend(list(res))
ordered_results = ordered_results[:size]
shutil.rmtree(tmpdir)
return ordered_results
def scatter_point_inds(indices, point_inds, shape):
ret = -1 * torch.ones(*shape, dtype=point_inds.dtype, device=point_inds.device)
ndim = indices.shape[-1]
flattened_indices = indices.view(-1, ndim)
slices = [flattened_indices[:, i] for i in range(ndim)]
ret[slices] = point_inds
return ret
def generate_voxel2pinds(sparse_tensor):
device = sparse_tensor.indices.device
batch_size = sparse_tensor.batch_size
spatial_shape = sparse_tensor.spatial_shape
indices = sparse_tensor.indices.long()
point_indices = torch.arange(indices.shape[0], device=device, dtype=torch.int32)
output_shape = [batch_size] + list(spatial_shape)
v2pinds_tensor = scatter_point_inds(indices, point_indices, output_shape)
return v2pinds_tensor
def sa_create(name, var):
x = SharedArray.create(name, var.shape, dtype=var.dtype)
x[...] = var[...]
x.flags.writeable = False
return x
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
|