File size: 6,469 Bytes
62a2f1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
from functools import partial

import torch.nn as nn

from ...utils.spconv_utils import replace_feature, spconv


def post_act_block(in_channels, out_channels, kernel_size, indice_key=None, stride=1, padding=0,
                   conv_type='subm', norm_fn=None):

    if conv_type == 'subm':
        conv = spconv.SubMConv3d(in_channels, out_channels, kernel_size, bias=False, indice_key=indice_key)
    elif conv_type == 'spconv':
        conv = spconv.SparseConv3d(in_channels, out_channels, kernel_size, stride=stride, padding=padding,
                                   bias=False, indice_key=indice_key)
    elif conv_type == 'inverseconv':
        conv = spconv.SparseInverseConv3d(in_channels, out_channels, kernel_size, indice_key=indice_key, bias=False)
    else:
        raise NotImplementedError

    m = spconv.SparseSequential(
        conv,
        norm_fn(out_channels),
        nn.ReLU(),
    )

    return m


class SparseBasicBlock(spconv.SparseModule):
    expansion = 1

    def __init__(self, inplanes, planes, stride=1, bias=None, norm_fn=None, downsample=None, indice_key=None):
        super(SparseBasicBlock, self).__init__()

        assert norm_fn is not None
        if bias is None:
            bias = norm_fn is not None
        self.conv1 = spconv.SubMConv3d(
            inplanes, planes, kernel_size=3, stride=stride, padding=1, bias=bias, indice_key=indice_key
        )
        self.bn1 = norm_fn(planes)
        self.relu = nn.ReLU()
        self.conv2 = spconv.SubMConv3d(
            planes, planes, kernel_size=3, stride=stride, padding=1, bias=bias, indice_key=indice_key
        )
        self.bn2 = norm_fn(planes)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        identity = x

        out = self.conv1(x)
        out = replace_feature(out, self.bn1(out.features))
        out = replace_feature(out, self.relu(out.features))

        out = self.conv2(out)
        out = replace_feature(out, self.bn2(out.features))

        if self.downsample is not None:
            identity = self.downsample(x)

        out = replace_feature(out, out.features + identity.features)
        out = replace_feature(out, self.relu(out.features))

        return out


class VoxelResBackBone8x(nn.Module):
    def __init__(self, model_cfg, input_channels, grid_size, **kwargs):
        super().__init__()
        self.model_cfg = model_cfg
        use_bias = self.model_cfg.get('USE_BIAS', None)
        norm_fn = partial(nn.BatchNorm1d, eps=1e-3, momentum=0.01)

        self.sparse_shape = grid_size[::-1] + [1, 0, 0]

        self.conv_input = spconv.SparseSequential(
            spconv.SubMConv3d(input_channels, 16, 3, padding=1, bias=False, indice_key='subm1'),
            norm_fn(16),
            nn.ReLU(),
        )
        block = post_act_block

        self.conv1 = spconv.SparseSequential(
            SparseBasicBlock(16, 16, bias=use_bias, norm_fn=norm_fn, indice_key='res1'),
            SparseBasicBlock(16, 16, bias=use_bias, norm_fn=norm_fn, indice_key='res1'),
        )

        self.conv2 = spconv.SparseSequential(
            # [1600, 1408, 41] <- [800, 704, 21]
            block(16, 32, 3, norm_fn=norm_fn, stride=2, padding=1, indice_key='spconv2', conv_type='spconv'),
            SparseBasicBlock(32, 32, bias=use_bias, norm_fn=norm_fn, indice_key='res2'),
            SparseBasicBlock(32, 32, bias=use_bias, norm_fn=norm_fn, indice_key='res2'),
        )

        self.conv3 = spconv.SparseSequential(
            # [800, 704, 21] <- [400, 352, 11]
            block(32, 64, 3, norm_fn=norm_fn, stride=2, padding=1, indice_key='spconv3', conv_type='spconv'),
            SparseBasicBlock(64, 64, bias=use_bias, norm_fn=norm_fn, indice_key='res3'),
            SparseBasicBlock(64, 64, bias=use_bias, norm_fn=norm_fn, indice_key='res3'),
        )

        self.conv4 = spconv.SparseSequential(
            # [400, 352, 11] <- [200, 176, 5]
            block(64, 128, 3, norm_fn=norm_fn, stride=2, padding=(0, 1, 1), indice_key='spconv4', conv_type='spconv'),
            SparseBasicBlock(128, 128, bias=use_bias, norm_fn=norm_fn, indice_key='res4'),
            SparseBasicBlock(128, 128, bias=use_bias, norm_fn=norm_fn, indice_key='res4'),
        )

        last_pad = 0
        last_pad = self.model_cfg.get('last_pad', last_pad)
        self.conv_out = spconv.SparseSequential(
            # [200, 150, 5] -> [200, 150, 2]
            spconv.SparseConv3d(128, 128, (3, 1, 1), stride=(2, 1, 1), padding=last_pad,
                                bias=False, indice_key='spconv_down2'),
            norm_fn(128),
            nn.ReLU(),
        )
        self.num_point_features = 128
        self.backbone_channels = {
            'x_conv1': 16,
            'x_conv2': 32,
            'x_conv3': 64,
            'x_conv4': 128
        }

    def forward(self, batch_dict):
        """
        Args:
            batch_dict:
                batch_size: int
                vfe_features: (num_voxels, C)
                voxel_coords: (num_voxels, 4), [batch_idx, z_idx, y_idx, x_idx]
        Returns:
            batch_dict:
                encoded_spconv_tensor: sparse tensor
        """
        voxel_features, voxel_coords = batch_dict['voxel_features'], batch_dict['voxel_coords']
        batch_size = batch_dict['batch_size']
        input_sp_tensor = spconv.SparseConvTensor(
            features=voxel_features,
            indices=voxel_coords.int(),
            spatial_shape=self.sparse_shape,
            batch_size=batch_size
        )
        x = self.conv_input(input_sp_tensor)

        x_conv1 = self.conv1(x)
        x_conv2 = self.conv2(x_conv1)
        x_conv3 = self.conv3(x_conv2)
        x_conv4 = self.conv4(x_conv3)

        # for detection head
        # [200, 176, 5] -> [200, 176, 2]
        out = self.conv_out(x_conv4)

        batch_dict.update({
            'encoded_spconv_tensor': out,
            'encoded_spconv_tensor_stride': 8
        })
        batch_dict.update({
            'multi_scale_3d_features': {
                'x_conv1': x_conv1,
                'x_conv2': x_conv2,
                'x_conv3': x_conv3,
                'x_conv4': x_conv4,
            }
        })

        batch_dict.update({
            'multi_scale_3d_strides': {
                'x_conv1': 1,
                'x_conv2': 2,
                'x_conv3': 4,
                'x_conv4': 8,
            }
        })
        
        return batch_dict