File size: 16,395 Bytes
62a2f1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
import os
import logging
from dataclasses import dataclass
from typing import Optional, Tuple, List, Dict, Any
import time
import json
import pathlib
from tqdm import tqdm
import pandas as pd
import numpy as np
import argparse
import torch
from torch import nn
from torch.utils.data import DataLoader, Dataset
from transformers import (
    get_linear_schedule_with_warmup,
    BertForSequenceClassification,
    AutoTokenizer,
    AdamW
)
from sklearn.metrics import roc_auc_score

import traceback


logging.basicConfig(
    format='%(asctime)s - %(levelname)s - %(message)s',
    level=logging.INFO,
    handlers=[
        logging.FileHandler('training.log'),
        logging.StreamHandler()
    ]
)
logger = logging.getLogger(__name__)


@dataclass
class TrainingConfig:
    max_seq_len: int = 50
    epochs: int = 3
    batch_size: int = 32
    learning_rate: float = 2e-5
    patience: int = 1
    max_grad_norm: float = 10.0
    warmup_ratio: float = 0.1
    model_path: str = '/cpfs01/shared/MA4Tool/hug_ckpts/BERT_ckpt'
    num_labels: int = 2
    if_save_model: bool = True
    out_dir: str = './run_0'

    def validate(self) -> None:
        if self.max_seq_len <= 0:
            raise ValueError("max_seq_len must be positive")
        if self.epochs <= 0:
            raise ValueError("epochs must be positive")
        if self.batch_size <= 0:
            raise ValueError("batch_size must be positive")
        if not (0.0 < self.learning_rate):
            raise ValueError("learning_rate must be between 0 and 1")


class DataPrecessForSentence(Dataset):
    def __init__(self, bert_tokenizer: AutoTokenizer, df: pd.DataFrame, max_seq_len: int = 50):
        self.bert_tokenizer = bert_tokenizer
        self.max_seq_len = max_seq_len
        self.input_ids, self.attention_mask, self.token_type_ids, self.labels = self._get_input(df)

    def __len__(self) -> int:
        return len(self.labels)

    def __getitem__(self, idx: int) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
        return (
            self.input_ids[idx],
            self.attention_mask[idx],
            self.token_type_ids[idx],
            self.labels[idx]
        )

    def _get_input(self, df: pd.DataFrame) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
        sentences = df['s1'].values
        labels = df['similarity'].values

        tokens_seq = list(map(self.bert_tokenizer.tokenize, sentences))
        result = list(map(self._truncate_and_pad, tokens_seq))

        input_ids = torch.tensor([i[0] for i in result], dtype=torch.long)
        attention_mask = torch.tensor([i[1] for i in result], dtype=torch.long)
        token_type_ids = torch.tensor([i[2] for i in result], dtype=torch.long)
        labels = torch.tensor(labels, dtype=torch.long)

        return input_ids, attention_mask, token_type_ids, labels

    def _truncate_and_pad(self, tokens_seq: List[str]) -> Tuple[List[int], List[int], List[int]]:
        tokens_seq = ['[CLS]'] + tokens_seq[:self.max_seq_len - 1]
        padding_length = self.max_seq_len - len(tokens_seq)

        input_ids = self.bert_tokenizer.convert_tokens_to_ids(tokens_seq)
        input_ids += [0] * padding_length
        attention_mask = [1] * len(tokens_seq) + [0] * padding_length
        token_type_ids = [0] * self.max_seq_len

        return input_ids, attention_mask, token_type_ids


class BertClassifier(nn.Module):
    def __init__(self, model_path: str, num_labels: int, requires_grad: bool = True):
        super().__init__()
        try:
            self.bert = BertForSequenceClassification.from_pretrained(
                model_path,
                num_labels=num_labels
            )
            self.tokenizer = AutoTokenizer.from_pretrained(model_path)
        except Exception as e:
            logger.error(f"Failed to load BERT model: {e}")
            raise

        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

        for param in self.bert.parameters():
            param.requires_grad = requires_grad

    def forward(
            self,
            batch_seqs: torch.Tensor,
            batch_seq_masks: torch.Tensor,
            batch_seq_segments: torch.Tensor,
            labels: torch.Tensor
    ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
        loss, logits = self.bert(
            input_ids=batch_seqs,
            attention_mask=batch_seq_masks,
            token_type_ids=batch_seq_segments,
            labels=labels
        )[:2]
        probabilities = nn.functional.softmax(logits, dim=-1)
        return loss, logits, probabilities


class BertTrainer:
    def __init__(self, config: TrainingConfig):
        self.config = config
        self.config.validate()
        self.model = BertClassifier(config.model_path, config.num_labels)
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        self.model.to(self.device)

    def _prepare_data(
            self,
            train_df: pd.DataFrame,
            dev_df: pd.DataFrame,
            test_df: pd.DataFrame
    ) -> Tuple[DataLoader, DataLoader, DataLoader]:
        train_data = DataPrecessForSentence(
            self.model.tokenizer,
            train_df,
            max_seq_len=self.config.max_seq_len
        )
        train_loader = DataLoader(
            train_data,
            shuffle=True,
            batch_size=self.config.batch_size
        )

        dev_data = DataPrecessForSentence(
            self.model.tokenizer,
            dev_df,
            max_seq_len=self.config.max_seq_len
        )
        dev_loader = DataLoader(
            dev_data,
            shuffle=False,
            batch_size=self.config.batch_size
        )

        test_data = DataPrecessForSentence(
            self.model.tokenizer,
            test_df,
            max_seq_len=self.config.max_seq_len
        )
        test_loader = DataLoader(
            test_data,
            shuffle=False,
            batch_size=self.config.batch_size
        )

        return train_loader, dev_loader, test_loader

    def _prepare_optimizer(self, num_training_steps: int) -> Tuple[AdamW, Any]:
        param_optimizer = list(self.model.named_parameters())
        no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
        optimizer_grouped_parameters = [
            {
                'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
                'weight_decay': 0.01
            },
            {
                'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
                'weight_decay': 0.0
            }
        ]

        optimizer = AdamW(
            optimizer_grouped_parameters,
            lr=self.config.learning_rate
        )

        scheduler = get_linear_schedule_with_warmup(
            optimizer,
            num_warmup_steps=int(num_training_steps * self.config.warmup_ratio),
            num_training_steps=num_training_steps
        )

        return optimizer, scheduler

    def _initialize_training_stats(self) -> Dict[str, List]:
        return {
            'epochs_count': [],
            'train_losses': [],
            'train_accuracies': [],
            'valid_losses': [],
            'valid_accuracies': [],
            'valid_aucs': []
        }

    def _update_training_stats(
            self,
            training_stats: Dict[str, List],
            epoch: int,
            train_metrics: Dict[str, float],
            val_metrics: Dict[str, float]
    ) -> None:
        training_stats['epochs_count'].append(epoch)
        training_stats['train_losses'].append(train_metrics['loss'])
        training_stats['train_accuracies'].append(train_metrics['accuracy'])
        training_stats['valid_losses'].append(val_metrics['loss'])
        training_stats['valid_accuracies'].append(val_metrics['accuracy'])
        training_stats['valid_aucs'].append(val_metrics['auc'])

        logger.info(
            f"Training - Loss: {train_metrics['loss']:.4f}, "
            f"Accuracy: {train_metrics['accuracy'] * 100:.2f}%"
        )
        logger.info(
            f"Validation - Loss: {val_metrics['loss']:.4f}, "
            f"Accuracy: {val_metrics['accuracy'] * 100:.2f}%, "
            f"AUC: {val_metrics['auc']:.4f}"
        )

    def _save_checkpoint(
            self,
            target_dir: str,
            epoch: int,
            optimizer: AdamW,
            best_score: float,
            training_stats: Dict[str, List]
    ) -> None:
        checkpoint = {
            "epoch": epoch,
            "model": self.model.state_dict(),
            "optimizer": optimizer.state_dict(),
            "best_score": best_score,
            **training_stats
        }
        torch.save(
            checkpoint,
            os.path.join(target_dir, "best.pth.tar")
        )
        logger.info("Model saved successfully")

    def _load_checkpoint(
            self,
            checkpoint_path: str,
            optimizer: AdamW,
            training_stats: Dict[str, List]
    ) -> float:
        checkpoint = torch.load(checkpoint_path)
        self.model.load_state_dict(checkpoint["model"])
        optimizer.load_state_dict(checkpoint["optimizer"])
        for key in training_stats:
            training_stats[key] = checkpoint[key]
        logger.info(f"Loaded checkpoint from epoch {checkpoint['epoch']}")
        return checkpoint["best_score"]

    def _train_epoch(
            self,
            train_loader: DataLoader,
            optimizer: AdamW,
            scheduler: Any
    ) -> Dict[str, float]:
        self.model.train()
        total_loss = 0
        correct_preds = 0

        for batch in tqdm(train_loader, desc="Training"):
            batch = tuple(t.to(self.device) for t in batch)
            input_ids, attention_mask, token_type_ids, labels = batch

            optimizer.zero_grad()
            loss, _, probabilities = self.model(input_ids, attention_mask, token_type_ids, labels)

            loss.backward()
            nn.utils.clip_grad_norm_(self.model.parameters(), self.config.max_grad_norm)

            optimizer.step()
            scheduler.step()

            total_loss += loss.item()
            correct_preds += (probabilities.argmax(dim=1) == labels).sum().item()

        return {
            'loss': total_loss / len(train_loader),
            'accuracy': correct_preds / len(train_loader.dataset)
        }

    def _validate_epoch(self, dev_loader: DataLoader) -> Tuple[Dict[str, float], List[float]]:
        self.model.eval()
        total_loss = 0
        correct_preds = 0
        all_probs = []
        all_labels = []

        with torch.no_grad():
            for batch in tqdm(dev_loader, desc="Validating"):
                batch = tuple(t.to(self.device) for t in batch)
                input_ids, attention_mask, token_type_ids, labels = batch

                loss, _, probabilities = self.model(input_ids, attention_mask, token_type_ids, labels)

                total_loss += loss.item()
                correct_preds += (probabilities.argmax(dim=1) == labels).sum().item()
                all_probs.extend(probabilities[:, 1].cpu().numpy())
                all_labels.extend(labels.cpu().numpy())

        metrics = {
            'loss': total_loss / len(dev_loader),
            'accuracy': correct_preds / len(dev_loader.dataset),
            'auc': roc_auc_score(all_labels, all_probs)
        }

        return metrics, all_probs

    def _evaluate_test_set(
            self,
            test_loader: DataLoader,
            target_dir: str,
            epoch: int
    ) -> None:
        test_metrics, all_probs = self._validate_epoch(test_loader)
        logger.info(f"Test accuracy: {test_metrics['accuracy'] * 100:.2f}%")

        test_prediction = pd.DataFrame({'prob_1': all_probs})
        test_prediction['prob_0'] = 1 - test_prediction['prob_1']
        test_prediction['prediction'] = test_prediction.apply(
            lambda x: 0 if (x['prob_0'] > x['prob_1']) else 1,
            axis=1
        )

        output_path = os.path.join(target_dir, f"test_prediction_epoch_{epoch}.csv")
        test_prediction.to_csv(output_path, index=False)
        logger.info(f"Test predictions saved to {output_path}")

    def train_and_evaluate(
            self,
            train_df: pd.DataFrame,
            dev_df: pd.DataFrame,
            test_df: pd.DataFrame,
            target_dir: str,
            checkpoint: Optional[str] = None
    ) -> None:
        try:
            os.makedirs(target_dir, exist_ok=True)

            train_loader, dev_loader, test_loader = self._prepare_data(
                train_df, dev_df, test_df
            )

            optimizer, scheduler = self._prepare_optimizer(
                len(train_loader) * self.config.epochs
            )

            training_stats = self._initialize_training_stats()
            best_score = 0.0
            patience_counter = 0

            if checkpoint:
                best_score = self._load_checkpoint(checkpoint, optimizer, training_stats)

            for epoch in range(1, self.config.epochs + 1):
                logger.info(f"Training epoch {epoch}")

                # Train
                train_metrics = self._train_epoch(train_loader, optimizer, scheduler)

                # Val
                val_metrics, _ = self._validate_epoch(dev_loader)

                self._update_training_stats(training_stats, epoch, train_metrics, val_metrics)

                # Saving / Early stopping
                if val_metrics['accuracy'] > best_score:
                    best_score = val_metrics['accuracy']
                    patience_counter = 0
                    if self.config.if_save_model:
                        self._save_checkpoint(
                            target_dir,
                            epoch,
                            optimizer,
                            best_score,
                            training_stats
                        )
                    self._evaluate_test_set(test_loader, target_dir, epoch)
                else:
                    patience_counter += 1
                    if patience_counter >= self.config.patience:
                        logger.info("Early stopping triggered")
                        break

            final_infos = {
                "sentiment": {
                    "means": {
                        "best_acc": best_score
                    }
                }
            }

            with open(os.path.join(self.config.out_dir, "final_info.json"), "w") as f:
                json.dump(final_infos, f)

        except Exception as e:
            logger.error(f"Training failed: {e}")
            raise


def set_seed(seed: int = 42) -> None:
    import random
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    torch.backends.cudnn.deterministic = True
    torch.backends.cudnn.benchmark = False
    os.environ['PYTHONHASHSEED'] = str(seed)


def main(out_dir):
    try:
        config = TrainingConfig(out_dir=out_dir)
        pathlib.Path(config.out_dir).mkdir(parents=True, exist_ok=True)

        data_path = "/cpfs01/shared/MA4Tool/datasets/SST-2/"
        train_df = pd.read_csv(
            os.path.join(data_path, "train.tsv"),
            sep='\t',
            header=None,
            names=['similarity', 's1']
        )
        dev_df = pd.read_csv(
            os.path.join(data_path, "dev.tsv"),
            sep='\t',
            header=None,
            names=['similarity', 's1']
        )
        test_df = pd.read_csv(
            os.path.join(data_path, "test.tsv"),
            sep='\t',
            header=None,
            names=['similarity', 's1']
        )

        set_seed(2024)

        trainer = BertTrainer(config)
        trainer.train_and_evaluate(train_df, dev_df, test_df, "./output/Bert/")

    except Exception as e:
        logger.error(f"Program failed: {e}")
        raise


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--out_dir", type=str, default="run_0")
    args = parser.parse_args()
    try: 
        main(args.out_dir)
    except Exception as e:
        print("Original error in subprocess:", flush=True)
        traceback.print_exc(file=open(os.path.join(args.out_dir, "traceback.log"), "w"))
        raise