MagBERT-NER: a state-of-the-art NER model for Moroccan French language (Maghreb)
Introduction
[MagBERT-NER] is a state-of-the-art NER model for Moroccan French language (Maghreb). The MagBERT-NER model was fine-tuned for NER Task based the language model for French Camembert (based on the RoBERTa architecture).
For further information or requests, please visite our website at typica.ai Website or send us an email at contactus@typica.ai
How to use MagBERT-NER with HuggingFace
Load MagBERT-NER and its sub-word tokenizer :
from transformers import AutoTokenizer, AutoModelForTokenClassification
tokenizer = AutoTokenizer.from_pretrained("TypicaAI/magbert-ner")
model = AutoModelForTokenClassification.from_pretrained("TypicaAI/magbert-ner")
##### Process text sample (from wikipedia about the current Prime Minister of Morocco) Using NER pipeline
from transformers import pipeline
nlp = pipeline('ner', model=model, tokenizer=tokenizer, grouped_entities=True)
nlp("Saad Dine El Otmani, né le 16 janvier 1956 à Inezgane, est un homme d'État marocain, chef du gouvernement du Maroc depuis le 5 avril 2017")
#[{'entity_group': 'I-PERSON',
# 'score': 0.8941445276141167,
# 'word': 'Saad Dine El Otmani'},
# {'entity_group': 'B-DATE',
# 'score': 0.5967703461647034,
# 'word': '16 janvier 1956'},
# {'entity_group': 'B-GPE', 'score': 0.7160899192094803, 'word': 'Inezgane'},
# {'entity_group': 'B-NORP', 'score': 0.7971733212471008, 'word': 'marocain'},
# {'entity_group': 'B-GPE', 'score': 0.8921478390693665, 'word': 'Maroc'},
# {'entity_group': 'B-DATE',
# 'score': 0.5760444005330404,
# 'word': '5 avril 2017'}]
Authors
MagBert-NER Model was trained by Hicham Assoudi, Ph.D. For any questions, comments you can contact me at assoudi@typica.ai
Citation
If you use our work, please cite: Hicham Assoudi, Ph.D., MagBERT-NER: a state-of-the-art NER model for Moroccan French language (Maghreb), (2020)
- Downloads last month
- 15
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.