metadata
language:
- th
- en
license: apache-2.0
library_name: transformers
base_model:
- Qwen/Qwen2.5-7B-Instruct
- Qwen/Qwen2.5-7B
pipeline_tag: text-generation
model-index:
- name: Tsunami-0.5x-7B-Instruct
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 70.99
name: strict accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Tsunami-th/Tsunami-0.5x-7B-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 37.36
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Tsunami-th/Tsunami-0.5x-7B-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 4.83
name: exact match
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Tsunami-th/Tsunami-0.5x-7B-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 8.61
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Tsunami-th/Tsunami-0.5x-7B-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 18.57
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Tsunami-th/Tsunami-0.5x-7B-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 38.42
name: accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Tsunami-th/Tsunami-0.5x-7B-Instruct
name: Open LLM Leaderboard
Tsunami-0.5x-7B-Instruct
TSUNAMI: Transformative Semantic Understanding and Natural Augmentation Model for Intelligence.
TSUNAMI full name was created by ChatGPT.
infomation
Tsunami-0.5x-7B-Instruct is Thai Large Language Model that fine-tuned from Qwen2.5-7B around 100,000 rows in Thai dataset.
Prompt Template
This model uses ChatML
prompt template:
<|im_start|>system
{System}<|im_end|>
<|im_start|>user
{User}<|im_end|>
<|im_start|>assistant
{Assistant}
How to use
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
model_name = "Tsunami-th/Tsunami-0.5x-7B-Instruct"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "สวัสดีครับ"}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
inputs = tokenizer(text, return_tensors="pt")
inputs = inputs.to(model.device)
with torch.no_grad():
output = model.generate(**inputs, max_new_tokens=512)
response = tokenizer.decode(output[0, len(inputs['input_ids'][0]):], skip_special_tokens=True)
Author
- Pollakrit Lorprasertkul | game.pollakrit@gmail.com
- Tsunami-0.5x-7B-Instruct is the version 0.5x that did not train on the whole dataset.
- Tsunami-1.0-7B-Instruct is coming soon.
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 29.80 |
IFEval (0-Shot) | 70.99 |
BBH (3-Shot) | 37.36 |
MATH Lvl 5 (4-Shot) | 4.83 |
GPQA (0-shot) | 8.61 |
MuSR (0-shot) | 18.57 |
MMLU-PRO (5-shot) | 38.42 |