lilt-invoices / README.md
Toobese's picture
End of training
f5b71d6
|
raw
history blame
4.76 kB
metadata
license: mit
base_model: SCUT-DLVCLab/lilt-roberta-en-base
tags:
  - generated_from_trainer
model-index:
  - name: lilt-invoices
    results: []

lilt-invoices

This model is a fine-tuned version of SCUT-DLVCLab/lilt-roberta-en-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0031
  • Endorname: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 177}
  • Escription: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 183}
  • Illingaddress: {'precision': 1.0, 'recall': 0.9937888198757764, 'f1': 0.9968847352024921, 'number': 161}
  • Mount: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 175}
  • Nitprice: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 156}
  • Nvoicedate: {'precision': 0.9941520467836257, 'recall': 1.0, 'f1': 0.9970674486803519, 'number': 170}
  • Nvoicetotal: {'precision': 0.9946808510638298, 'recall': 0.9946808510638298, 'f1': 0.9946808510638298, 'number': 188}
  • Otaltax: {'precision': 1.0, 'recall': 0.9927007299270073, 'f1': 0.9963369963369962, 'number': 137}
  • Uantity: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 167}
  • Ubtotal: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 151}
  • Overall Precision: 0.9988
  • Overall Recall: 0.9982
  • Overall F1: 0.9985
  • Overall Accuracy: 0.9994

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 500

Training results

Training Loss Epoch Step Validation Loss Endorname Escription Illingaddress Mount Nitprice Nvoicedate Nvoicetotal Otaltax Uantity Ubtotal Overall Precision Overall Recall Overall F1 Overall Accuracy
0.1736 21.74 500 0.0031 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 177} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 183} {'precision': 1.0, 'recall': 0.9937888198757764, 'f1': 0.9968847352024921, 'number': 161} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 175} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 156} {'precision': 0.9941520467836257, 'recall': 1.0, 'f1': 0.9970674486803519, 'number': 170} {'precision': 0.9946808510638298, 'recall': 0.9946808510638298, 'f1': 0.9946808510638298, 'number': 188} {'precision': 1.0, 'recall': 0.9927007299270073, 'f1': 0.9963369963369962, 'number': 137} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 167} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 151} 0.9988 0.9982 0.9985 0.9994

Framework versions

  • Transformers 4.32.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.4
  • Tokenizers 0.13.3