Toobese commited on
Commit
f5b71d6
1 Parent(s): c41b791

End of training

Browse files
Files changed (1) hide show
  1. README.md +20 -17
README.md CHANGED
@@ -15,21 +15,21 @@ should probably proofread and complete it, then remove this comment. -->
15
 
16
  This model is a fine-tuned version of [SCUT-DLVCLab/lilt-roberta-en-base](https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base) on the None dataset.
17
  It achieves the following results on the evaluation set:
18
- - Loss: 0.1475
19
- - Endorname: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1}
20
- - Escription: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1}
21
- - Illingaddress: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1}
22
- - Mount: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1}
23
- - Nitprice: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 2}
24
- - Nvoicedate: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1}
25
- - Nvoicetotal: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1}
26
- - Otaltax: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1}
27
- - Uantity: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1}
28
- - Ubtotal: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1}
29
- - Overall Precision: 1.0
30
- - Overall Recall: 1.0
31
- - Overall F1: 1.0
32
- - Overall Accuracy: 1.0
33
 
34
  ## Model description
35
 
@@ -54,15 +54,18 @@ The following hyperparameters were used during training:
54
  - seed: 42
55
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
56
  - lr_scheduler_type: linear
57
- - training_steps: 20
58
 
59
  ### Training results
60
 
 
 
 
61
 
62
 
63
  ### Framework versions
64
 
65
- - Transformers 4.31.0
66
  - Pytorch 2.0.1+cu118
67
  - Datasets 2.14.4
68
  - Tokenizers 0.13.3
 
15
 
16
  This model is a fine-tuned version of [SCUT-DLVCLab/lilt-roberta-en-base](https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base) on the None dataset.
17
  It achieves the following results on the evaluation set:
18
+ - Loss: 0.0031
19
+ - Endorname: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 177}
20
+ - Escription: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 183}
21
+ - Illingaddress: {'precision': 1.0, 'recall': 0.9937888198757764, 'f1': 0.9968847352024921, 'number': 161}
22
+ - Mount: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 175}
23
+ - Nitprice: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 156}
24
+ - Nvoicedate: {'precision': 0.9941520467836257, 'recall': 1.0, 'f1': 0.9970674486803519, 'number': 170}
25
+ - Nvoicetotal: {'precision': 0.9946808510638298, 'recall': 0.9946808510638298, 'f1': 0.9946808510638298, 'number': 188}
26
+ - Otaltax: {'precision': 1.0, 'recall': 0.9927007299270073, 'f1': 0.9963369963369962, 'number': 137}
27
+ - Uantity: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 167}
28
+ - Ubtotal: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 151}
29
+ - Overall Precision: 0.9988
30
+ - Overall Recall: 0.9982
31
+ - Overall F1: 0.9985
32
+ - Overall Accuracy: 0.9994
33
 
34
  ## Model description
35
 
 
54
  - seed: 42
55
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
56
  - lr_scheduler_type: linear
57
+ - training_steps: 500
58
 
59
  ### Training results
60
 
61
+ | Training Loss | Epoch | Step | Validation Loss | Endorname | Escription | Illingaddress | Mount | Nitprice | Nvoicedate | Nvoicetotal | Otaltax | Uantity | Ubtotal | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
62
+ |:-------------:|:-----:|:----:|:---------------:|:-----------------------------------------------------------:|:-----------------------------------------------------------:|:-----------------------------------------------------------------------------------------:|:-----------------------------------------------------------:|:-----------------------------------------------------------:|:-----------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------:|:-----------------------------------------------------------:|:-----------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
63
+ | 0.1736 | 21.74 | 500 | 0.0031 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 177} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 183} | {'precision': 1.0, 'recall': 0.9937888198757764, 'f1': 0.9968847352024921, 'number': 161} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 175} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 156} | {'precision': 0.9941520467836257, 'recall': 1.0, 'f1': 0.9970674486803519, 'number': 170} | {'precision': 0.9946808510638298, 'recall': 0.9946808510638298, 'f1': 0.9946808510638298, 'number': 188} | {'precision': 1.0, 'recall': 0.9927007299270073, 'f1': 0.9963369963369962, 'number': 137} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 167} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 151} | 0.9988 | 0.9982 | 0.9985 | 0.9994 |
64
 
65
 
66
  ### Framework versions
67
 
68
+ - Transformers 4.32.0
69
  - Pytorch 2.0.1+cu118
70
  - Datasets 2.14.4
71
  - Tokenizers 0.13.3