End of training
Browse files
README.md
CHANGED
@@ -15,21 +15,21 @@ should probably proofread and complete it, then remove this comment. -->
|
|
15 |
|
16 |
This model is a fine-tuned version of [SCUT-DLVCLab/lilt-roberta-en-base](https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base) on the None dataset.
|
17 |
It achieves the following results on the evaluation set:
|
18 |
-
- Loss: 0.
|
19 |
-
- Endorname: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number':
|
20 |
-
- Escription: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number':
|
21 |
-
- Illingaddress: {'precision': 1.0, 'recall':
|
22 |
-
- Mount: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number':
|
23 |
-
- Nitprice: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number':
|
24 |
-
- Nvoicedate: {'precision':
|
25 |
-
- Nvoicetotal: {'precision':
|
26 |
-
- Otaltax: {'precision': 1.0, 'recall':
|
27 |
-
- Uantity: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number':
|
28 |
-
- Ubtotal: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number':
|
29 |
-
- Overall Precision:
|
30 |
-
- Overall Recall:
|
31 |
-
- Overall F1:
|
32 |
-
- Overall Accuracy:
|
33 |
|
34 |
## Model description
|
35 |
|
@@ -54,15 +54,18 @@ The following hyperparameters were used during training:
|
|
54 |
- seed: 42
|
55 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
56 |
- lr_scheduler_type: linear
|
57 |
-
- training_steps:
|
58 |
|
59 |
### Training results
|
60 |
|
|
|
|
|
|
|
61 |
|
62 |
|
63 |
### Framework versions
|
64 |
|
65 |
-
- Transformers 4.
|
66 |
- Pytorch 2.0.1+cu118
|
67 |
- Datasets 2.14.4
|
68 |
- Tokenizers 0.13.3
|
|
|
15 |
|
16 |
This model is a fine-tuned version of [SCUT-DLVCLab/lilt-roberta-en-base](https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base) on the None dataset.
|
17 |
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 0.0031
|
19 |
+
- Endorname: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 177}
|
20 |
+
- Escription: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 183}
|
21 |
+
- Illingaddress: {'precision': 1.0, 'recall': 0.9937888198757764, 'f1': 0.9968847352024921, 'number': 161}
|
22 |
+
- Mount: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 175}
|
23 |
+
- Nitprice: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 156}
|
24 |
+
- Nvoicedate: {'precision': 0.9941520467836257, 'recall': 1.0, 'f1': 0.9970674486803519, 'number': 170}
|
25 |
+
- Nvoicetotal: {'precision': 0.9946808510638298, 'recall': 0.9946808510638298, 'f1': 0.9946808510638298, 'number': 188}
|
26 |
+
- Otaltax: {'precision': 1.0, 'recall': 0.9927007299270073, 'f1': 0.9963369963369962, 'number': 137}
|
27 |
+
- Uantity: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 167}
|
28 |
+
- Ubtotal: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 151}
|
29 |
+
- Overall Precision: 0.9988
|
30 |
+
- Overall Recall: 0.9982
|
31 |
+
- Overall F1: 0.9985
|
32 |
+
- Overall Accuracy: 0.9994
|
33 |
|
34 |
## Model description
|
35 |
|
|
|
54 |
- seed: 42
|
55 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
56 |
- lr_scheduler_type: linear
|
57 |
+
- training_steps: 500
|
58 |
|
59 |
### Training results
|
60 |
|
61 |
+
| Training Loss | Epoch | Step | Validation Loss | Endorname | Escription | Illingaddress | Mount | Nitprice | Nvoicedate | Nvoicetotal | Otaltax | Uantity | Ubtotal | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|
62 |
+
|:-------------:|:-----:|:----:|:---------------:|:-----------------------------------------------------------:|:-----------------------------------------------------------:|:-----------------------------------------------------------------------------------------:|:-----------------------------------------------------------:|:-----------------------------------------------------------:|:-----------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------:|:-----------------------------------------------------------:|:-----------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
|
63 |
+
| 0.1736 | 21.74 | 500 | 0.0031 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 177} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 183} | {'precision': 1.0, 'recall': 0.9937888198757764, 'f1': 0.9968847352024921, 'number': 161} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 175} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 156} | {'precision': 0.9941520467836257, 'recall': 1.0, 'f1': 0.9970674486803519, 'number': 170} | {'precision': 0.9946808510638298, 'recall': 0.9946808510638298, 'f1': 0.9946808510638298, 'number': 188} | {'precision': 1.0, 'recall': 0.9927007299270073, 'f1': 0.9963369963369962, 'number': 137} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 167} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 151} | 0.9988 | 0.9982 | 0.9985 | 0.9994 |
|
64 |
|
65 |
|
66 |
### Framework versions
|
67 |
|
68 |
+
- Transformers 4.32.0
|
69 |
- Pytorch 2.0.1+cu118
|
70 |
- Datasets 2.14.4
|
71 |
- Tokenizers 0.13.3
|