This is a model for named entity recognition of Japanese medical documents.

How to use

Download the following five files and put into the same folder.

  • id_to_tags.pkl
  • key_attr.pkl
  • text.txt
  • NER_medNLP.py
  • predict.py

You can use this model by running predict.py.

python3 predict.py

Input Example

肥大型心筋症、心房細動に対してWF投与が開始となった。
治療経過中に非持続性心室頻拍が認められたためアミオダロンが併用となった。

Output Example

 <d certainty="positive">肥大型心筋症、心房細動</d>に対して<m-key state="executed">WF</m-key>投与が開始となった。
<timex3 type="med">治療経過中</timex3>に<d certainty="positive">非持続性心室頻拍</d>が認められたため<m-key state="executed">アミオダロン</m-key>が併用となった。
Downloads last month
4
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.