Tommert25's picture
End of training
6116e5e
metadata
license: mit
base_model: pdelobelle/robbert-v2-dutch-base
tags:
  - generated_from_trainer
metrics:
  - recall
  - accuracy
model-index:
  - name: robbert_dataaugmentation
    results: []

robbert_dataaugmentation

This model is a fine-tuned version of pdelobelle/robbert-v2-dutch-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7814
  • Precisions: 0.8515
  • Recall: 0.8094
  • F-measure: 0.8265
  • Accuracy: 0.9039

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 7.5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 14

Training results

Training Loss Epoch Step Validation Loss Precisions Recall F-measure Accuracy
0.5813 1.0 285 0.4311 0.7695 0.7413 0.7537 0.8704
0.2533 2.0 570 0.4952 0.8339 0.7501 0.7745 0.8801
0.1216 3.0 855 0.5067 0.8403 0.7968 0.8148 0.8932
0.0685 4.0 1140 0.6121 0.8041 0.7972 0.7963 0.8886
0.0478 5.0 1425 0.6603 0.8239 0.7820 0.7983 0.8893
0.0294 6.0 1710 0.7029 0.8190 0.8029 0.8083 0.8954
0.0147 7.0 1995 0.7219 0.8332 0.8198 0.8227 0.8991
0.0142 8.0 2280 0.7702 0.8330 0.7953 0.8109 0.8961
0.0099 9.0 2565 0.7670 0.8340 0.7943 0.8086 0.8972
0.0044 10.0 2850 0.8132 0.8434 0.8026 0.8193 0.9025
0.0058 11.0 3135 0.7757 0.8468 0.8100 0.8253 0.9033
0.0046 12.0 3420 0.7814 0.8515 0.8094 0.8265 0.9039
0.0029 13.0 3705 0.8057 0.8494 0.8046 0.8229 0.9029
0.0012 14.0 3990 0.7994 0.8492 0.8047 0.8230 0.9031

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.14.1