File size: 7,151 Bytes
2156f95 7e39477 2156f95 43a3be4 2156f95 7e39477 2156f95 43a3be4 2156f95 43a3be4 2156f95 43a3be4 2156f95 43a3be4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
---
license: mit
base_model: gpt2
tags:
- generated_from_trainer
model-index:
- name: GPT-2_para3M
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# GPT-2_para3M
This model is a pretrained version of [gpt2](https://huggingface.co/gpt2) on an [Tinystory](https://huggingface.co/datasets/roneneldan/TinyStories) dataset.
It achieves the following results on the evaluation set:
- Loss: 2.3207
## Model description
More information needed
## Intended uses & limitations
The limitation of this model are mainly 2 aspects.
* The number of parameter of the model is only around 3.6 million which is not large. As a result the model cannot generate text in all perspectives.
* The dataset is only composed of stories, this greatly hinder the performance of the model. Only stories can be generated.
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 9.6976 | 0.01 | 100 | 7.7754 |
| 6.488 | 0.02 | 200 | 5.7795 |
| 5.3705 | 0.03 | 300 | 4.8609 |
| 4.5632 | 0.04 | 400 | 4.2544 |
| 4.141 | 0.05 | 500 | 3.9425 |
| 3.902 | 0.06 | 600 | 3.7189 |
| 3.7074 | 0.07 | 700 | 3.5514 |
| 3.5716 | 0.08 | 800 | 3.4291 |
| 3.4695 | 0.08 | 900 | 3.3253 |
| 3.3847 | 0.09 | 1000 | 3.2311 |
| 3.2974 | 0.1 | 1100 | 3.1595 |
| 3.2318 | 0.11 | 1200 | 3.0909 |
| 3.1698 | 0.12 | 1300 | 3.0329 |
| 3.1258 | 0.13 | 1400 | 2.9879 |
| 3.0802 | 0.14 | 1500 | 2.9396 |
| 3.046 | 0.15 | 1600 | 2.9017 |
| 3.0047 | 0.16 | 1700 | 2.8652 |
| 2.9701 | 0.17 | 1800 | 2.8320 |
| 2.9425 | 0.18 | 1900 | 2.8048 |
| 2.9141 | 0.19 | 2000 | 2.7757 |
| 2.8896 | 0.2 | 2100 | 2.7515 |
| 2.8667 | 0.21 | 2200 | 2.7263 |
| 2.8443 | 0.22 | 2300 | 2.7066 |
| 2.8288 | 0.23 | 2400 | 2.6815 |
| 2.8044 | 0.24 | 2500 | 2.6620 |
| 2.7886 | 0.25 | 2600 | 2.6471 |
| 2.7732 | 0.25 | 2700 | 2.6283 |
| 2.7576 | 0.26 | 2800 | 2.6101 |
| 2.7479 | 0.27 | 2900 | 2.5978 |
| 2.7256 | 0.28 | 3000 | 2.5819 |
| 2.7179 | 0.29 | 3100 | 2.5688 |
| 2.707 | 0.3 | 3200 | 2.5595 |
| 2.6921 | 0.31 | 3300 | 2.5471 |
| 2.6809 | 0.32 | 3400 | 2.5329 |
| 2.6779 | 0.33 | 3500 | 2.5232 |
| 2.663 | 0.34 | 3600 | 2.5154 |
| 2.6554 | 0.35 | 3700 | 2.5030 |
| 2.6437 | 0.36 | 3800 | 2.4967 |
| 2.6346 | 0.37 | 3900 | 2.4859 |
| 2.6293 | 0.38 | 4000 | 2.4768 |
| 2.6221 | 0.39 | 4100 | 2.4709 |
| 2.6178 | 0.4 | 4200 | 2.4623 |
| 2.6076 | 0.41 | 4300 | 2.4586 |
| 2.6025 | 0.41 | 4400 | 2.4492 |
| 2.5907 | 0.42 | 4500 | 2.4409 |
| 2.5896 | 0.43 | 4600 | 2.4369 |
| 2.5816 | 0.44 | 4700 | 2.4316 |
| 2.5783 | 0.45 | 4800 | 2.4256 |
| 2.577 | 0.46 | 4900 | 2.4204 |
| 2.5685 | 0.47 | 5000 | 2.4150 |
| 2.567 | 0.48 | 5100 | 2.4093 |
| 2.5564 | 0.49 | 5200 | 2.4059 |
| 2.5556 | 0.5 | 5300 | 2.4012 |
| 2.5496 | 0.51 | 5400 | 2.3997 |
| 2.545 | 0.52 | 5500 | 2.3956 |
| 2.5473 | 0.53 | 5600 | 2.3905 |
| 2.5389 | 0.54 | 5700 | 2.3856 |
| 2.5373 | 0.55 | 5800 | 2.3818 |
| 2.5318 | 0.56 | 5900 | 2.3787 |
| 2.5313 | 0.57 | 6000 | 2.3751 |
| 2.5285 | 0.58 | 6100 | 2.3722 |
| 2.5318 | 0.58 | 6200 | 2.3687 |
| 2.5229 | 0.59 | 6300 | 2.3666 |
| 2.5194 | 0.6 | 6400 | 2.3632 |
| 2.5174 | 0.61 | 6500 | 2.3598 |
| 2.5169 | 0.62 | 6600 | 2.3567 |
| 2.511 | 0.63 | 6700 | 2.3552 |
| 2.5093 | 0.64 | 6800 | 2.3546 |
| 2.5114 | 0.65 | 6900 | 2.3528 |
| 2.5064 | 0.66 | 7000 | 2.3492 |
| 2.507 | 0.67 | 7100 | 2.3483 |
| 2.502 | 0.68 | 7200 | 2.3445 |
| 2.4964 | 0.69 | 7300 | 2.3448 |
| 2.4999 | 0.7 | 7400 | 2.3423 |
| 2.4961 | 0.71 | 7500 | 2.3407 |
| 2.489 | 0.72 | 7600 | 2.3386 |
| 2.4926 | 0.73 | 7700 | 2.3384 |
| 2.4919 | 0.74 | 7800 | 2.3365 |
| 2.491 | 0.74 | 7900 | 2.3349 |
| 2.4893 | 0.75 | 8000 | 2.3333 |
| 2.4909 | 0.76 | 8100 | 2.3318 |
| 2.4862 | 0.77 | 8200 | 2.3305 |
| 2.4884 | 0.78 | 8300 | 2.3299 |
| 2.49 | 0.79 | 8400 | 2.3280 |
| 2.4788 | 0.8 | 8500 | 2.3286 |
| 2.4865 | 0.81 | 8600 | 2.3272 |
| 2.4823 | 0.82 | 8700 | 2.3263 |
| 2.4844 | 0.83 | 8800 | 2.3255 |
| 2.4826 | 0.84 | 8900 | 2.3251 |
| 2.4844 | 0.85 | 9000 | 2.3243 |
| 2.4798 | 0.86 | 9100 | 2.3231 |
| 2.4864 | 0.87 | 9200 | 2.3231 |
| 2.4755 | 0.88 | 9300 | 2.3228 |
| 2.4735 | 0.89 | 9400 | 2.3228 |
| 2.4786 | 0.9 | 9500 | 2.3224 |
| 2.4791 | 0.91 | 9600 | 2.3222 |
| 2.4809 | 0.91 | 9700 | 2.3214 |
| 2.4778 | 0.92 | 9800 | 2.3213 |
| 2.4777 | 0.93 | 9900 | 2.3211 |
| 2.4798 | 0.94 | 10000 | 2.3209 |
| 2.4768 | 0.95 | 10100 | 2.3212 |
| 2.4808 | 0.96 | 10200 | 2.3209 |
| 2.4762 | 0.97 | 10300 | 2.3208 |
| 2.4778 | 0.98 | 10400 | 2.3208 |
| 2.4816 | 0.99 | 10500 | 2.3207 |
| 2.4728 | 1.0 | 10600 | 2.3207 |
### Framework versions
- Transformers 4.32.0
- Pytorch 2.0.1+cu117
- Datasets 2.14.4
- Tokenizers 0.13.2
|