File size: 7,151 Bytes
2156f95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e39477
2156f95
43a3be4
2156f95
 
 
 
 
 
 
7e39477
 
 
2156f95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43a3be4
2156f95
 
 
 
 
 
43a3be4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2156f95
 
 
 
 
43a3be4
2156f95
43a3be4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
---
license: mit
base_model: gpt2
tags:
- generated_from_trainer
model-index:
- name: GPT-2_para3M
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# GPT-2_para3M

This model is a pretrained version of [gpt2](https://huggingface.co/gpt2) on an [Tinystory](https://huggingface.co/datasets/roneneldan/TinyStories) dataset.
It achieves the following results on the evaluation set:
- Loss: 2.3207

## Model description

More information needed

## Intended uses & limitations

The limitation of this model are mainly 2 aspects.
* The number of parameter of the model is only around 3.6 million which is not large. As a result the model cannot generate text in all perspectives.
* The dataset is only composed of stories, this greatly hinder the performance of the model. Only stories can be generated. 
## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 1

### Training results

| Training Loss | Epoch | Step  | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 9.6976        | 0.01  | 100   | 7.7754          |
| 6.488         | 0.02  | 200   | 5.7795          |
| 5.3705        | 0.03  | 300   | 4.8609          |
| 4.5632        | 0.04  | 400   | 4.2544          |
| 4.141         | 0.05  | 500   | 3.9425          |
| 3.902         | 0.06  | 600   | 3.7189          |
| 3.7074        | 0.07  | 700   | 3.5514          |
| 3.5716        | 0.08  | 800   | 3.4291          |
| 3.4695        | 0.08  | 900   | 3.3253          |
| 3.3847        | 0.09  | 1000  | 3.2311          |
| 3.2974        | 0.1   | 1100  | 3.1595          |
| 3.2318        | 0.11  | 1200  | 3.0909          |
| 3.1698        | 0.12  | 1300  | 3.0329          |
| 3.1258        | 0.13  | 1400  | 2.9879          |
| 3.0802        | 0.14  | 1500  | 2.9396          |
| 3.046         | 0.15  | 1600  | 2.9017          |
| 3.0047        | 0.16  | 1700  | 2.8652          |
| 2.9701        | 0.17  | 1800  | 2.8320          |
| 2.9425        | 0.18  | 1900  | 2.8048          |
| 2.9141        | 0.19  | 2000  | 2.7757          |
| 2.8896        | 0.2   | 2100  | 2.7515          |
| 2.8667        | 0.21  | 2200  | 2.7263          |
| 2.8443        | 0.22  | 2300  | 2.7066          |
| 2.8288        | 0.23  | 2400  | 2.6815          |
| 2.8044        | 0.24  | 2500  | 2.6620          |
| 2.7886        | 0.25  | 2600  | 2.6471          |
| 2.7732        | 0.25  | 2700  | 2.6283          |
| 2.7576        | 0.26  | 2800  | 2.6101          |
| 2.7479        | 0.27  | 2900  | 2.5978          |
| 2.7256        | 0.28  | 3000  | 2.5819          |
| 2.7179        | 0.29  | 3100  | 2.5688          |
| 2.707         | 0.3   | 3200  | 2.5595          |
| 2.6921        | 0.31  | 3300  | 2.5471          |
| 2.6809        | 0.32  | 3400  | 2.5329          |
| 2.6779        | 0.33  | 3500  | 2.5232          |
| 2.663         | 0.34  | 3600  | 2.5154          |
| 2.6554        | 0.35  | 3700  | 2.5030          |
| 2.6437        | 0.36  | 3800  | 2.4967          |
| 2.6346        | 0.37  | 3900  | 2.4859          |
| 2.6293        | 0.38  | 4000  | 2.4768          |
| 2.6221        | 0.39  | 4100  | 2.4709          |
| 2.6178        | 0.4   | 4200  | 2.4623          |
| 2.6076        | 0.41  | 4300  | 2.4586          |
| 2.6025        | 0.41  | 4400  | 2.4492          |
| 2.5907        | 0.42  | 4500  | 2.4409          |
| 2.5896        | 0.43  | 4600  | 2.4369          |
| 2.5816        | 0.44  | 4700  | 2.4316          |
| 2.5783        | 0.45  | 4800  | 2.4256          |
| 2.577         | 0.46  | 4900  | 2.4204          |
| 2.5685        | 0.47  | 5000  | 2.4150          |
| 2.567         | 0.48  | 5100  | 2.4093          |
| 2.5564        | 0.49  | 5200  | 2.4059          |
| 2.5556        | 0.5   | 5300  | 2.4012          |
| 2.5496        | 0.51  | 5400  | 2.3997          |
| 2.545         | 0.52  | 5500  | 2.3956          |
| 2.5473        | 0.53  | 5600  | 2.3905          |
| 2.5389        | 0.54  | 5700  | 2.3856          |
| 2.5373        | 0.55  | 5800  | 2.3818          |
| 2.5318        | 0.56  | 5900  | 2.3787          |
| 2.5313        | 0.57  | 6000  | 2.3751          |
| 2.5285        | 0.58  | 6100  | 2.3722          |
| 2.5318        | 0.58  | 6200  | 2.3687          |
| 2.5229        | 0.59  | 6300  | 2.3666          |
| 2.5194        | 0.6   | 6400  | 2.3632          |
| 2.5174        | 0.61  | 6500  | 2.3598          |
| 2.5169        | 0.62  | 6600  | 2.3567          |
| 2.511         | 0.63  | 6700  | 2.3552          |
| 2.5093        | 0.64  | 6800  | 2.3546          |
| 2.5114        | 0.65  | 6900  | 2.3528          |
| 2.5064        | 0.66  | 7000  | 2.3492          |
| 2.507         | 0.67  | 7100  | 2.3483          |
| 2.502         | 0.68  | 7200  | 2.3445          |
| 2.4964        | 0.69  | 7300  | 2.3448          |
| 2.4999        | 0.7   | 7400  | 2.3423          |
| 2.4961        | 0.71  | 7500  | 2.3407          |
| 2.489         | 0.72  | 7600  | 2.3386          |
| 2.4926        | 0.73  | 7700  | 2.3384          |
| 2.4919        | 0.74  | 7800  | 2.3365          |
| 2.491         | 0.74  | 7900  | 2.3349          |
| 2.4893        | 0.75  | 8000  | 2.3333          |
| 2.4909        | 0.76  | 8100  | 2.3318          |
| 2.4862        | 0.77  | 8200  | 2.3305          |
| 2.4884        | 0.78  | 8300  | 2.3299          |
| 2.49          | 0.79  | 8400  | 2.3280          |
| 2.4788        | 0.8   | 8500  | 2.3286          |
| 2.4865        | 0.81  | 8600  | 2.3272          |
| 2.4823        | 0.82  | 8700  | 2.3263          |
| 2.4844        | 0.83  | 8800  | 2.3255          |
| 2.4826        | 0.84  | 8900  | 2.3251          |
| 2.4844        | 0.85  | 9000  | 2.3243          |
| 2.4798        | 0.86  | 9100  | 2.3231          |
| 2.4864        | 0.87  | 9200  | 2.3231          |
| 2.4755        | 0.88  | 9300  | 2.3228          |
| 2.4735        | 0.89  | 9400  | 2.3228          |
| 2.4786        | 0.9   | 9500  | 2.3224          |
| 2.4791        | 0.91  | 9600  | 2.3222          |
| 2.4809        | 0.91  | 9700  | 2.3214          |
| 2.4778        | 0.92  | 9800  | 2.3213          |
| 2.4777        | 0.93  | 9900  | 2.3211          |
| 2.4798        | 0.94  | 10000 | 2.3209          |
| 2.4768        | 0.95  | 10100 | 2.3212          |
| 2.4808        | 0.96  | 10200 | 2.3209          |
| 2.4762        | 0.97  | 10300 | 2.3208          |
| 2.4778        | 0.98  | 10400 | 2.3208          |
| 2.4816        | 0.99  | 10500 | 2.3207          |
| 2.4728        | 1.0   | 10600 | 2.3207          |


### Framework versions

- Transformers 4.32.0
- Pytorch 2.0.1+cu117
- Datasets 2.14.4
- Tokenizers 0.13.2