File size: 1,578 Bytes
a337082
 
 
 
328d8e5
a337082
 
 
328d8e5
 
 
a337082
 
328d8e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a337082
 
 
 
 
 
 
 
328d8e5
 
 
 
a337082
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
---
license: apache-2.0
base_model: google/vit-base-patch16-224
tags:
- image-classification
- generated_from_trainer
datasets:
- cifar10-lt
metrics:
- accuracy
- f1
model-index:
- name: cifar10-lt
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: cifar10-lt
      type: cifar10-lt
      config: r-10
      split: test
      args: r-10
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.9659
    - name: F1
      type: f1
      value: 0.9660399066727052
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# cifar10-lt

This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the cifar10-lt dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1132
- Accuracy: 0.9659
- F1: 0.9660

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3

### Training results



### Framework versions

- Transformers 4.33.3
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3