|
--- |
|
license: apache-2.0 |
|
datasets: |
|
- cerebras/SlimPajama-627B |
|
language: |
|
- en |
|
--- |
|
<div align="center"> |
|
|
|
# TinyLlama-1.1B-v2 |
|
</div> |
|
|
|
https://github.com/jzhang38/TinyLlama |
|
|
|
|
|
<div align="center"> |
|
<img src="https://huggingface.co/PY007/TinyLlama-1.1B-intermediate-step-240k-503b/resolve/main/TinyLlama_logo.png" width="300"/> |
|
</div> |
|
|
|
We adopted exactly the same architecture and tokenizer as Llama 2. This means TinyLlama can be plugged and played in many open-source projects built upon Llama. Besides, TinyLlama is compact with only 1.1B parameters. This compactness allows it to cater to a multitude of applications demanding a restricted computation and memory footprint. |
|
|
|
#### This Model |
|
Due to these issues([bug1](https://whimsical-aphid-86d.notion.site/Release-of-TinyLlama-1-5T-Checkpoints-Postponed-01b266998c1c47f78f5ae1520196d194?pvs=4), [bug2](https://whimsical-aphid-86d.notion.site/2023-12-18-Updates-from-TinyLlama-Team-7d30c01fff794da28ccc952f327c8d4f)). We retrain our TinyLlama-v2 only with 2T tokens on SlimPajama dataset (~3 epochs). |
|
|
|
#### How to use |
|
You will need the transformers>=4.31 |
|
Do check the [TinyLlama](https://github.com/jzhang38/TinyLlama) github page for more information. |
|
``` |
|
from transformers import AutoTokenizer |
|
import transformers |
|
import torch |
|
model = "TinyLlama/TinyLlama_v2" |
|
tokenizer = AutoTokenizer.from_pretrained(model) |
|
pipeline = transformers.pipeline( |
|
"text-generation", |
|
model=model, |
|
torch_dtype=torch.float16, |
|
device_map="auto", |
|
) |
|
|
|
sequences = pipeline( |
|
'The TinyLlama project aims to pretrain a 1.1B Llama model on 3 trillion tokens. With some proper optimization, we can achieve this within a span of "just" 90 days using 16 A100-40G GPUs ππ. The training has started on 2023-09-01.', |
|
do_sample=True, |
|
top_k=10, |
|
num_return_sequences=1, |
|
repetition_penalty=1.5, |
|
eos_token_id=tokenizer.eos_token_id, |
|
max_length=500, |
|
) |
|
for seq in sequences: |
|
print(f"Result: {seq['generated_text']}") |
|
``` |
|
|
|
#### Eval |
|
| Model | Pretrain Tokens | HellaSwag | Obqa | WinoGrande | ARC_c | ARC_e | boolq | piqa | avg | |
|
|-------------------------------------------|-----------------|-----------|------|------------|-------|-------|-------|------|-----| |
|
| Pythia-1.0B | 300B | 47.16 | 31.40| 53.43 | 27.05 | 48.99 | 60.83 | 69.21 | 48.30 | |
|
| TinyLlama-1.1B-intermediate-step-1431k-3T | 3T | 59.20 | 36.00 | 59.12 | 30.12 | 55.25 | 57.83 | 73.29 | 52.99| |
|
| TinyLlama-1.1B-v2 | 2T | **61.47** | **36.80** | **59.43** | **32.68** | **55.47** | 55.99 | **73.56** | **53.63**| |
|
|