SOMD-train-scibert

This model is a fine-tuned version of allenai/scibert_scivocab_cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0000
  • F1: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 256
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss F1
No log 1.0 1243 0.0053 0.7304
No log 2.0 2486 0.0029 0.8024
No log 3.0 3729 0.0017 0.8700
No log 4.0 4972 0.0011 0.9302
No log 5.0 6215 0.0010 0.9305
No log 6.0 7458 0.0008 0.9545
No log 7.0 8701 0.0007 0.9629
No log 8.0 9944 0.0004 0.9698
No log 9.0 11187 0.0002 0.9854
No log 10.0 12430 0.0002 0.9871
No log 11.0 13673 0.0002 0.9934
No log 12.0 14916 0.0001 0.9898
No log 13.0 16159 0.0000 0.9985
No log 14.0 17402 0.0001 0.9940
No log 15.0 18645 0.0000 0.9986
No log 16.0 19888 0.0000 0.9966
No log 17.0 21131 0.0000 0.9994
No log 18.0 22374 0.0000 1.0
No log 19.0 23617 0.0000 1.0
No log 20.0 24860 0.0000 1.0

Framework versions

  • Transformers 4.37.0
  • Pytorch 2.1.2
  • Datasets 2.1.0
  • Tokenizers 0.15.1
Downloads last month
11
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ThuyNT03/SOMD-train-scibert

Finetuned
(9)
this model