Configuration Parsing Warning: In adapter_config.json: "peft.task_type" must be a string

distilhubert-finetuned-gtzan

This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2387
  • Accuracy: 0.9319

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 6
  • eval_batch_size: 6
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.7644 1.0 167 1.7832 0.3554
1.2856 2.0 334 1.4226 0.4745
1.2123 3.0 501 1.0047 0.6737
0.6613 4.0 668 0.8091 0.6987
0.6442 5.0 835 0.6713 0.7858
0.7172 6.0 1002 0.5749 0.8238
0.5394 7.0 1169 0.5079 0.8408
0.3853 8.0 1336 0.4574 0.8539
0.5441 9.0 1503 0.3729 0.8869
0.5062 10.0 1670 0.3319 0.9009
0.3955 11.0 1837 0.3745 0.8849
0.3112 12.0 2004 0.2752 0.9289
0.2887 13.0 2171 0.2544 0.9289
0.2038 14.0 2338 0.2344 0.9329
0.2374 15.0 2505 0.2387 0.9319

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.1+cu121
  • Datasets 2.15.0
  • Tokenizers 0.15.0

Training procedure

Framework versions

  • PEFT 0.6.2
Downloads last month
3
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for ThreeBlessings/distilhubert-finetuned-gtzan

Adapter
(1)
this model

Dataset used to train ThreeBlessings/distilhubert-finetuned-gtzan

Evaluation results