Model card error

There’s an error in the yaml metadata in this model card. If you’re the model author, please log in to check the list of errors and warnings.


Model description

This model is a Classifier model based on T5-small, that predicts if a answer / question couple is considered as important fact or not (Is this answer enough relevant to appear in a plausible summary?). It is actually a component of QuestEval metric but can be used independently as it is.

How to use

from transformers import T5Tokenizer, T5ForConditionalGeneration

tokenizer = T5Tokenizer.from_pretrained("ThomasNLG/t5-weighter_cnndm-en")

model = T5ForConditionalGeneration.from_pretrained("ThomasNLG/t5-weighter_cnndm-en")

You can play with the model using the inference API, the text input format should follow this template (accordingly to the training stage of the model):

text_input = "{ANSWER} </s> {QUESTION} </s> {CONTEXT}"

Training data

The model was trained on synthetic data as described in Questeval: Summarization asks for fact-based evaluation.

Citation info

  title={Questeval: Summarization asks for fact-based evaluation},
  author={Scialom, Thomas and Dray, Paul-Alexis and Gallinari, Patrick and Lamprier, Sylvain and Piwowarski, Benjamin and Staiano, Jacopo and Wang, Alex},
  journal={arXiv preprint arXiv:2103.12693},

Select AutoNLP in the “Train” menu to fine-tune this model automatically.

Downloads last month
Hosted inference API
Text2Text Generation
This model can be loaded on the Inference API on-demand.
Evaluation results

Model card error

This model's model-index metadata is invalid: Schema validation error. properties must have property 'metrics'