longformer-sep_tok / README.md
Theoreticallyhugo's picture
trainer: training complete at 2024-02-06 18:59:05.773178.
b35093d verified
|
raw
history blame
5.42 kB
metadata
license: apache-2.0
base_model: allenai/longformer-base-4096
tags:
  - generated_from_trainer
datasets:
  - fancy_dataset
metrics:
  - accuracy
model-index:
  - name: longformer-sep_tok
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: fancy_dataset
          type: fancy_dataset
          config: simple
          split: test
          args: simple
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8209896449174101

longformer-sep_tok

This model is a fine-tuned version of allenai/longformer-base-4096 on the fancy_dataset dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4200
  • Claim: {'precision': 0.8410830848577645, 'recall': 0.7810956443646161, 'f1-score': 0.8099802103139188, 'support': 13362.0}
  • Majorclaim: {'precision': 0.6330965315503552, 'recall': 0.6943171402383135, 'f1-score': 0.6622950819672131, 'support': 2182.0}
  • Premise: {'precision': 0.8362706950484474, 'recall': 0.8864536999595632, 'f1-score': 0.8606312814070352, 'support': 12365.0}
  • Accuracy: 0.8210
  • Macro avg: {'precision': 0.7701501038188557, 'recall': 0.7872888281874976, 'f1-score': 0.7776355245627223, 'support': 27909.0}
  • Weighted avg: {'precision': 0.8226900267292406, 'recall': 0.8209896449174101, 'f1-score': 0.8208746007977725, 'support': 27909.0}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Claim Majorclaim Premise Accuracy Macro avg Weighted avg
No log 1.0 41 0.5303 {'precision': 0.7396921017402945, 'recall': 0.8270468492740608, 'f1-score': 0.780934209596495, 'support': 13362.0} {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 2182.0} {'precision': 0.8185673529184979, 'recall': 0.8585523655479175, 'f1-score': 0.8380832083366226, 'support': 12365.0} 0.7763 {'precision': 0.5194198182195975, 'recall': 0.5618664049406594, 'f1-score': 0.5396724726443726, 'support': 27909.0} {'precision': 0.716806448897884, 'recall': 0.7763445483535777, 'f1-score': 0.7451983868899174, 'support': 27909.0}
No log 2.0 82 0.4493 {'precision': 0.8127147766323024, 'recall': 0.7787756323903607, 'f1-score': 0.7953833218680731, 'support': 13362.0} {'precision': 0.7305801376597837, 'recall': 0.34051329055912005, 'f1-score': 0.4645201625507971, 'support': 2182.0} {'precision': 0.8051533219761499, 'recall': 0.9173473513950667, 'f1-score': 0.8575964918912788, 'support': 12365.0} 0.8059 {'precision': 0.7828160787560786, 'recall': 0.6788787581148492, 'f1-score': 0.7058333254367164, 'support': 27909.0} {'precision': 0.8029431915141912, 'recall': 0.8059049052277043, 'f1-score': 0.797078919478401, 'support': 27909.0}
No log 3.0 123 0.4200 {'precision': 0.8410830848577645, 'recall': 0.7810956443646161, 'f1-score': 0.8099802103139188, 'support': 13362.0} {'precision': 0.6330965315503552, 'recall': 0.6943171402383135, 'f1-score': 0.6622950819672131, 'support': 2182.0} {'precision': 0.8362706950484474, 'recall': 0.8864536999595632, 'f1-score': 0.8606312814070352, 'support': 12365.0} 0.8210 {'precision': 0.7701501038188557, 'recall': 0.7872888281874976, 'f1-score': 0.7776355245627223, 'support': 27909.0} {'precision': 0.8226900267292406, 'recall': 0.8209896449174101, 'f1-score': 0.8208746007977725, 'support': 27909.0}

Framework versions

  • Transformers 4.37.1
  • Pytorch 2.1.2+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.1