--- license: apache-2.0 base_model: allenai/longformer-base-4096 tags: - generated_from_trainer datasets: - fancy_dataset metrics: - accuracy model-index: - name: longformer-sep_tok results: - task: name: Token Classification type: token-classification dataset: name: fancy_dataset type: fancy_dataset config: simple split: test args: simple metrics: - name: Accuracy type: accuracy value: 0.8209896449174101 --- # longformer-sep_tok This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the fancy_dataset dataset. It achieves the following results on the evaluation set: - Loss: 0.4200 - Claim: {'precision': 0.8410830848577645, 'recall': 0.7810956443646161, 'f1-score': 0.8099802103139188, 'support': 13362.0} - Majorclaim: {'precision': 0.6330965315503552, 'recall': 0.6943171402383135, 'f1-score': 0.6622950819672131, 'support': 2182.0} - Premise: {'precision': 0.8362706950484474, 'recall': 0.8864536999595632, 'f1-score': 0.8606312814070352, 'support': 12365.0} - Accuracy: 0.8210 - Macro avg: {'precision': 0.7701501038188557, 'recall': 0.7872888281874976, 'f1-score': 0.7776355245627223, 'support': 27909.0} - Weighted avg: {'precision': 0.8226900267292406, 'recall': 0.8209896449174101, 'f1-score': 0.8208746007977725, 'support': 27909.0} ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Claim | Majorclaim | Premise | Accuracy | Macro avg | Weighted avg | |:-------------:|:-----:|:----:|:---------------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:--------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:| | No log | 1.0 | 41 | 0.5303 | {'precision': 0.7396921017402945, 'recall': 0.8270468492740608, 'f1-score': 0.780934209596495, 'support': 13362.0} | {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 2182.0} | {'precision': 0.8185673529184979, 'recall': 0.8585523655479175, 'f1-score': 0.8380832083366226, 'support': 12365.0} | 0.7763 | {'precision': 0.5194198182195975, 'recall': 0.5618664049406594, 'f1-score': 0.5396724726443726, 'support': 27909.0} | {'precision': 0.716806448897884, 'recall': 0.7763445483535777, 'f1-score': 0.7451983868899174, 'support': 27909.0} | | No log | 2.0 | 82 | 0.4493 | {'precision': 0.8127147766323024, 'recall': 0.7787756323903607, 'f1-score': 0.7953833218680731, 'support': 13362.0} | {'precision': 0.7305801376597837, 'recall': 0.34051329055912005, 'f1-score': 0.4645201625507971, 'support': 2182.0} | {'precision': 0.8051533219761499, 'recall': 0.9173473513950667, 'f1-score': 0.8575964918912788, 'support': 12365.0} | 0.8059 | {'precision': 0.7828160787560786, 'recall': 0.6788787581148492, 'f1-score': 0.7058333254367164, 'support': 27909.0} | {'precision': 0.8029431915141912, 'recall': 0.8059049052277043, 'f1-score': 0.797078919478401, 'support': 27909.0} | | No log | 3.0 | 123 | 0.4200 | {'precision': 0.8410830848577645, 'recall': 0.7810956443646161, 'f1-score': 0.8099802103139188, 'support': 13362.0} | {'precision': 0.6330965315503552, 'recall': 0.6943171402383135, 'f1-score': 0.6622950819672131, 'support': 2182.0} | {'precision': 0.8362706950484474, 'recall': 0.8864536999595632, 'f1-score': 0.8606312814070352, 'support': 12365.0} | 0.8210 | {'precision': 0.7701501038188557, 'recall': 0.7872888281874976, 'f1-score': 0.7776355245627223, 'support': 27909.0} | {'precision': 0.8226900267292406, 'recall': 0.8209896449174101, 'f1-score': 0.8208746007977725, 'support': 27909.0} | ### Framework versions - Transformers 4.37.1 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1