TheBloke commited on
Commit
afe154c
1 Parent(s): 641dfa5

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +398 -0
README.md ADDED
@@ -0,0 +1,398 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: stockmark/stockmark-13b
3
+ inference: false
4
+ language:
5
+ - ja
6
+ library_name: transformers
7
+ license: other
8
+ model_creator: Stockmark Inc.
9
+ model_name: Stockmark 13B
10
+ model_type: llama
11
+ pipeline_tag: text-generation
12
+ prompt_template: '{prompt}
13
+
14
+ '
15
+ quantized_by: TheBloke
16
+ tags:
17
+ - japanese
18
+ - llama-2
19
+ ---
20
+ <!-- markdownlint-disable MD041 -->
21
+
22
+ <!-- header start -->
23
+ <!-- 200823 -->
24
+ <div style="width: auto; margin-left: auto; margin-right: auto">
25
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
26
+ </div>
27
+ <div style="display: flex; justify-content: space-between; width: 100%;">
28
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
29
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
30
+ </div>
31
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
32
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
33
+ </div>
34
+ </div>
35
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
36
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
37
+ <!-- header end -->
38
+
39
+ # Stockmark 13B - AWQ
40
+ - Model creator: [Stockmark Inc.](https://huggingface.co/stockmark)
41
+ - Original model: [Stockmark 13B](https://huggingface.co/stockmark/stockmark-13b)
42
+
43
+ <!-- description start -->
44
+ ## Description
45
+
46
+ This repo contains AWQ model files for [Stockmark Inc.'s Stockmark 13B](https://huggingface.co/stockmark/stockmark-13b).
47
+
48
+ These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/).
49
+
50
+
51
+ ### About AWQ
52
+
53
+ AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.
54
+
55
+ It is supported by:
56
+
57
+ - [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ
58
+ - [vLLM](https://github.com/vllm-project/vllm) - Llama and Mistral models only
59
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
60
+ - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code
61
+
62
+ <!-- description end -->
63
+ <!-- repositories-available start -->
64
+ ## Repositories available
65
+
66
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/stockmark-13B-AWQ)
67
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/stockmark-13B-GPTQ)
68
+ * [Stockmark Inc.'s original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/stockmark/stockmark-13b)
69
+ <!-- repositories-available end -->
70
+
71
+ <!-- prompt-template start -->
72
+ ## Prompt template: None
73
+
74
+ ```
75
+ {prompt}
76
+
77
+ ```
78
+
79
+ <!-- prompt-template end -->
80
+
81
+
82
+ <!-- README_AWQ.md-provided-files start -->
83
+ ## Provided files, and AWQ parameters
84
+
85
+ For my first release of AWQ models, I am releasing 128g models only. I will consider adding 32g as well if there is interest, and once I have done perplexity and evaluation comparisons, but at this time 32g models are still not fully tested with AutoAWQ and vLLM.
86
+
87
+ Models are released as sharded safetensors files.
88
+
89
+ | Branch | Bits | GS | AWQ Dataset | Seq Len | Size |
90
+ | ------ | ---- | -- | ----------- | ------- | ---- |
91
+ | [main](https://huggingface.co/TheBloke/stockmark-13B-AWQ/tree/main) | 4 | 128 | japanese | 2048 | 7.62 GB
92
+
93
+ <!-- README_AWQ.md-provided-files end -->
94
+
95
+ <!-- README_AWQ.md-text-generation-webui start -->
96
+ ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
97
+
98
+ Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
99
+
100
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
101
+
102
+ 1. Click the **Model tab**.
103
+ 2. Under **Download custom model or LoRA**, enter `TheBloke/stockmark-13B-AWQ`.
104
+ 3. Click **Download**.
105
+ 4. The model will start downloading. Once it's finished it will say "Done".
106
+ 5. In the top left, click the refresh icon next to **Model**.
107
+ 6. In the **Model** dropdown, choose the model you just downloaded: `stockmark-13B-AWQ`
108
+ 7. Select **Loader: AutoAWQ**.
109
+ 8. Click Load, and the model will load and is now ready for use.
110
+ 9. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
111
+ 10. Once you're ready, click the **Text Generation** tab and enter a prompt to get started!
112
+ <!-- README_AWQ.md-text-generation-webui end -->
113
+
114
+ <!-- README_AWQ.md-use-from-vllm start -->
115
+ ## Multi-user inference server: vLLM
116
+
117
+ Documentation on installing and using vLLM [can be found here](https://vllm.readthedocs.io/en/latest/).
118
+
119
+ - Please ensure you are using vLLM version 0.2 or later.
120
+ - When using vLLM as a server, pass the `--quantization awq` parameter.
121
+
122
+ For example:
123
+
124
+ ```shell
125
+ python3 python -m vllm.entrypoints.api_server --model TheBloke/stockmark-13B-AWQ --quantization awq
126
+ ```
127
+
128
+ - When using vLLM from Python code, again set `quantization=awq`.
129
+
130
+ For example:
131
+
132
+ ```python
133
+ from vllm import LLM, SamplingParams
134
+
135
+ prompts = [
136
+ "Tell me about AI",
137
+ "Write a story about llamas",
138
+ "What is 291 - 150?",
139
+ "How much wood would a woodchuck chuck if a woodchuck could chuck wood?",
140
+ ]
141
+ prompt_template=f'''{prompt}
142
+ '''
143
+
144
+ prompts = [prompt_template.format(prompt=prompt) for prompt in prompts]
145
+
146
+ sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
147
+
148
+ llm = LLM(model="TheBloke/stockmark-13B-AWQ", quantization="awq", dtype="auto")
149
+
150
+ outputs = llm.generate(prompts, sampling_params)
151
+
152
+ # Print the outputs.
153
+ for output in outputs:
154
+ prompt = output.prompt
155
+ generated_text = output.outputs[0].text
156
+ print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
157
+ ```
158
+ <!-- README_AWQ.md-use-from-vllm start -->
159
+
160
+ <!-- README_AWQ.md-use-from-tgi start -->
161
+ ## Multi-user inference server: Hugging Face Text Generation Inference (TGI)
162
+
163
+ Use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0`
164
+
165
+ Example Docker parameters:
166
+
167
+ ```shell
168
+ --model-id TheBloke/stockmark-13B-AWQ --port 3000 --quantize awq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096
169
+ ```
170
+
171
+ Example Python code for interfacing with TGI (requires [huggingface-hub](https://github.com/huggingface/huggingface_hub) 0.17.0 or later):
172
+
173
+ ```shell
174
+ pip3 install huggingface-hub
175
+ ```
176
+
177
+ ```python
178
+ from huggingface_hub import InferenceClient
179
+
180
+ endpoint_url = "https://your-endpoint-url-here"
181
+
182
+ prompt = "Tell me about AI"
183
+ prompt_template=f'''{prompt}
184
+ '''
185
+
186
+ client = InferenceClient(endpoint_url)
187
+ response = client.text_generation(prompt,
188
+ max_new_tokens=128,
189
+ do_sample=True,
190
+ temperature=0.7,
191
+ top_p=0.95,
192
+ top_k=40,
193
+ repetition_penalty=1.1)
194
+
195
+ print(f"Model output: ", response)
196
+ ```
197
+ <!-- README_AWQ.md-use-from-tgi end -->
198
+
199
+ <!-- README_AWQ.md-use-from-python start -->
200
+ ## Inference from Python code using AutoAWQ
201
+
202
+ ### Install the AutoAWQ package
203
+
204
+ Requires: [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) 0.1.1 or later.
205
+
206
+ ```shell
207
+ pip3 install autoawq
208
+ ```
209
+
210
+ If you have problems installing [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) using the pre-built wheels, install it from source instead:
211
+
212
+ ```shell
213
+ pip3 uninstall -y autoawq
214
+ git clone https://github.com/casper-hansen/AutoAWQ
215
+ cd AutoAWQ
216
+ pip3 install .
217
+ ```
218
+
219
+ ### AutoAWQ example code
220
+
221
+ ```python
222
+ from awq import AutoAWQForCausalLM
223
+ from transformers import AutoTokenizer
224
+
225
+ model_name_or_path = "TheBloke/stockmark-13B-AWQ"
226
+
227
+ # Load tokenizer
228
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=False)
229
+ # Load model
230
+ model = AutoAWQForCausalLM.from_quantized(model_name_or_path, fuse_layers=True,
231
+ trust_remote_code=False, safetensors=True)
232
+
233
+ prompt = "Tell me about AI"
234
+ prompt_template=f'''{prompt}
235
+ '''
236
+
237
+ print("*** Running model.generate:")
238
+
239
+ token_input = tokenizer(
240
+ prompt_template,
241
+ return_tensors='pt'
242
+ ).input_ids.cuda()
243
+
244
+ # Generate output
245
+ generation_output = model.generate(
246
+ token_input,
247
+ do_sample=True,
248
+ temperature=0.7,
249
+ top_p=0.95,
250
+ top_k=40,
251
+ max_new_tokens=512
252
+ )
253
+
254
+ # Get the tokens from the output, decode them, print them
255
+ token_output = generation_output[0]
256
+ text_output = tokenizer.decode(token_output)
257
+ print("LLM output: ", text_output)
258
+
259
+ """
260
+ # Inference should be possible with transformers pipeline as well in future
261
+ # But currently this is not yet supported by AutoAWQ (correct as of September 25th 2023)
262
+ from transformers import pipeline
263
+
264
+ print("*** Pipeline:")
265
+ pipe = pipeline(
266
+ "text-generation",
267
+ model=model,
268
+ tokenizer=tokenizer,
269
+ max_new_tokens=512,
270
+ do_sample=True,
271
+ temperature=0.7,
272
+ top_p=0.95,
273
+ top_k=40,
274
+ repetition_penalty=1.1
275
+ )
276
+
277
+ print(pipe(prompt_template)[0]['generated_text'])
278
+ """
279
+ ```
280
+ <!-- README_AWQ.md-use-from-python end -->
281
+
282
+ <!-- README_AWQ.md-compatibility start -->
283
+ ## Compatibility
284
+
285
+ The files provided are tested to work with:
286
+
287
+ - [text-generation-webui](https://github.com/oobabooga/text-generation-webui) using `Loader: AutoAWQ`.
288
+ - [vLLM](https://github.com/vllm-project/vllm) version 0.2.0 and later.
289
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) version 1.1.0 and later.
290
+ - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) version 0.1.1 and later.
291
+
292
+ <!-- README_AWQ.md-compatibility end -->
293
+
294
+ <!-- footer start -->
295
+ <!-- 200823 -->
296
+ ## Discord
297
+
298
+ For further support, and discussions on these models and AI in general, join us at:
299
+
300
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
301
+
302
+ ## Thanks, and how to contribute
303
+
304
+ Thanks to the [chirper.ai](https://chirper.ai) team!
305
+
306
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
307
+
308
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
309
+
310
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
311
+
312
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
313
+
314
+ * Patreon: https://patreon.com/TheBlokeAI
315
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
316
+
317
+ **Special thanks to**: Aemon Algiz.
318
+
319
+ **Patreon special mentions**: Brandon Frisco, LangChain4j, Spiking Neurons AB, transmissions 11, Joseph William Delisle, Nitin Borwankar, Willem Michiel, Michael Dempsey, vamX, Jeffrey Morgan, zynix, jjj, Omer Bin Jawed, Sean Connelly, jinyuan sun, Jeromy Smith, Shadi, Pawan Osman, Chadd, Elijah Stavena, Illia Dulskyi, Sebastain Graf, Stephen Murray, terasurfer, Edmond Seymore, Celu Ramasamy, Mandus, Alex, biorpg, Ajan Kanaga, Clay Pascal, Raven Klaugh, 阿明, K, ya boyyy, usrbinkat, Alicia Loh, John Villwock, ReadyPlayerEmma, Chris Smitley, Cap'n Zoog, fincy, GodLy, S_X, sidney chen, Cory Kujawski, OG, Mano Prime, AzureBlack, Pieter, Kalila, Spencer Kim, Tom X Nguyen, Stanislav Ovsiannikov, Michael Levine, Andrey, Trailburnt, Vadim, Enrico Ros, Talal Aujan, Brandon Phillips, Jack West, Eugene Pentland, Michael Davis, Will Dee, webtim, Jonathan Leane, Alps Aficionado, Rooh Singh, Tiffany J. Kim, theTransient, Luke @flexchar, Elle, Caitlyn Gatomon, Ari Malik, subjectnull, Johann-Peter Hartmann, Trenton Dambrowitz, Imad Khwaja, Asp the Wyvern, Emad Mostaque, Rainer Wilmers, Alexandros Triantafyllidis, Nicholas, Pedro Madruga, SuperWojo, Harry Royden McLaughlin, James Bentley, Olakabola, David Ziegler, Ai Maven, Jeff Scroggin, Nikolai Manek, Deo Leter, Matthew Berman, Fen Risland, Ken Nordquist, Manuel Alberto Morcote, Luke Pendergrass, TL, Fred von Graf, Randy H, Dan Guido, NimbleBox.ai, Vitor Caleffi, Gabriel Tamborski, knownsqashed, Lone Striker, Erik Bjäreholt, John Detwiler, Leonard Tan, Iucharbius
320
+
321
+
322
+ Thank you to all my generous patrons and donaters!
323
+
324
+ And thank you again to a16z for their generous grant.
325
+
326
+ <!-- footer end -->
327
+
328
+ # Original model card: Stockmark Inc.'s Stockmark 13B
329
+
330
+
331
+ # stockmark/stockmark-13b
332
+
333
+ Stockmark-13b is a 13 billion parameter LLM pretrained from scratch based on Japanese corpus of about 220B tokens. This model is developed by [Stockmark Inc.](https://stockmark.co.jp/)
334
+
335
+ Please see our [blog](https://tech.stockmark.co.jp/blog/202310_stockmark_13b/) for more details.
336
+
337
+ This project is supported by [AWS LLM development support program](https://aws.amazon.com/jp/local/llm-development-support-program/).
338
+
339
+ ## How to use
340
+
341
+ ```python
342
+ import torch
343
+ from transformers import AutoModelForCausalLM, AutoTokenizer
344
+
345
+ # For A100 or H100 GPU
346
+ model = AutoModelForCausalLM.from_pretrained("stockmark/stockmark-13b", device_map="auto", torch_dtype=torch.bfloat16)
347
+
348
+ # If you use a T4 or V100 GPU, please load a model in 8 bit with the below code.
349
+ # To do so, you need to install `bitsandbytes` via `pip install bitsandbytes`.
350
+ # model = AutoModelForCausalLM.from_pretrained("stockmark/stockmark-13b", device_map={"": 0}, load_in_8bit=True)
351
+
352
+ tokenizer = AutoTokenizer.from_pretrained("stockmark/stockmark-13b")
353
+
354
+ inputs = tokenizer("自然言語処理とは", return_tensors="pt").to(model.device)
355
+ with torch.no_grad():
356
+ tokens = model.generate(
357
+ **inputs,
358
+ max_new_tokens=128,
359
+ do_sample=True,
360
+ temperature=0.7
361
+ )
362
+
363
+ output = tokenizer.decode(tokens[0], skip_special_tokens=True)
364
+ print(output)
365
+ ```
366
+
367
+ ## Examples:
368
+
369
+ - LoRA tuning: https://huggingface.co/stockmark/stockmark-13b/blob/main/notebooks/LoRA.ipynb
370
+
371
+ ## Training dataset
372
+
373
+ We have used Japanese corpus of total of about 220 billion tokens.
374
+
375
+ |corpus|tokens after preprocessing|
376
+ |:---:|:---:|
377
+ |Stockmark Web Corpus (This dataset will not be released)|9.1 billion|
378
+ |Patent|34.8 billion|
379
+ |Wikipedia|1.0 billion|
380
+ |CC100|10.9 billion|
381
+ |mC4|53.2 billion|
382
+ |CommonCrawl (snapshot: 2023-23, 2022-49, 2022-21, 2021-21)|112.9 billion|
383
+
384
+
385
+ ## Accelerator and Library
386
+ - Accelerator: AWS Trainium
387
+ - https://aws.amazon.com/machine-learning/trainium/
388
+ - Library for distributed training: neuronx-nemo-megatron
389
+ - https://github.com/aws-neuron/neuronx-nemo-megatron
390
+
391
+ ## License
392
+ [MIT](https://opensource.org/licenses/MIT)
393
+
394
+ ## Developed by
395
+ [Stockmark Inc.](https://stockmark.co.jp/)
396
+
397
+ ## Author
398
+ [Takahiro Omi](https://huggingface.co/omitakahiro)