Transformers
English
TheBlokeAI

Pankaj Mathur's Orca Mini 7B GGML

These files are GGML format model files for Pankaj Mathur's Orca Mini 7B.

GGML files are for CPU + GPU inference using llama.cpp and libraries and UIs which support this format, such as:

Repositories available

Prompt template:

### System:
You are an AI assistant that follows instruction extremely well. Help as much as you can.

### User:
prompt

### Response:

or

### System:
You are an AI assistant that follows instruction extremely well. Help as much as you can.

### User:
prompt

### Input:
input

### Response:

Compatibility

Original llama.cpp quant methods: q4_0, q4_1, q5_0, q5_1, q8_0

I have quantized these 'original' quantisation methods using an older version of llama.cpp so that they remain compatible with llama.cpp as of May 19th, commit 2d5db48.

These are guaranteed to be compatbile with any UIs, tools and libraries released since late May.

New k-quant methods: q2_K, q3_K_S, q3_K_M, q3_K_L, q4_K_S, q4_K_M, q5_K_S, q6_K

These new quantisation methods are compatible with llama.cpp as of June 6th, commit 2d43387.

They are now also compatible with recent releases of text-generation-webui, KoboldCpp, llama-cpp-python and ctransformers. Other tools and libraries may or may not be compatible - check their documentation if in doubt.

Explanation of the new k-quant methods

The new methods available are:

  • GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
  • GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
  • GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
  • GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
  • GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
  • GGML_TYPE_Q8_K - "type-0" 8-bit quantization. Only used for quantizing intermediate results. The difference to the existing Q8_0 is that the block size is 256. All 2-6 bit dot products are implemented for this quantization type.

Refer to the Provided Files table below to see what files use which methods, and how.

Provided files

Name Quant method Bits Size Max RAM required Use case
orca-mini-7b.ggmlv3.q2_K.bin q2_K 2 2.87 GB 5.37 GB New k-quant method. Uses GGML_TYPE_Q4_K for the attention.vw and feed_forward.w2 tensors, GGML_TYPE_Q2_K for the other tensors.
orca-mini-7b.ggmlv3.q3_K_L.bin q3_K_L 3 3.60 GB 6.10 GB New k-quant method. Uses GGML_TYPE_Q5_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K
orca-mini-7b.ggmlv3.q3_K_M.bin q3_K_M 3 3.28 GB 5.78 GB New k-quant method. Uses GGML_TYPE_Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K
orca-mini-7b.ggmlv3.q3_K_S.bin q3_K_S 3 2.95 GB 5.45 GB New k-quant method. Uses GGML_TYPE_Q3_K for all tensors
orca-mini-7b.ggmlv3.q4_0.bin q4_0 4 3.79 GB 6.29 GB Original llama.cpp quant method, 4-bit.
orca-mini-7b.ggmlv3.q4_1.bin q4_1 4 4.21 GB 6.71 GB Original llama.cpp quant method, 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models.
orca-mini-7b.ggmlv3.q4_K_M.bin q4_K_M 4 4.08 GB 6.58 GB New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q4_K
orca-mini-7b.ggmlv3.q4_K_S.bin q4_K_S 4 3.83 GB 6.33 GB New k-quant method. Uses GGML_TYPE_Q4_K for all tensors
orca-mini-7b.ggmlv3.q5_0.bin q5_0 5 4.63 GB 7.13 GB Original llama.cpp quant method, 5-bit. Higher accuracy, higher resource usage and slower inference.
orca-mini-7b.ggmlv3.q5_1.bin q5_1 5 5.06 GB 7.56 GB Original llama.cpp quant method, 5-bit. Even higher accuracy, resource usage and slower inference.
orca-mini-7b.ggmlv3.q5_K_M.bin q5_K_M 5 4.78 GB 7.28 GB New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q5_K
orca-mini-7b.ggmlv3.q5_K_S.bin q5_K_S 5 4.65 GB 7.15 GB New k-quant method. Uses GGML_TYPE_Q5_K for all tensors
orca-mini-7b.ggmlv3.q6_K.bin q6_K 6 5.53 GB 8.03 GB New k-quant method. Uses GGML_TYPE_Q8_K - 6-bit quantization - for all tensors
orca-mini-7b.ggmlv3.q8_0.bin q8_0 8 7.16 GB 9.66 GB Original llama.cpp quant method, 8-bit. Almost indistinguishable from float16. High resource use and slow. Not recommended for most users.

Note: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.

How to run in llama.cpp

I use the following command line; adjust for your tastes and needs:

./main -t 10 -ngl 32 -m orca-mini-7b.ggmlv3.q5_0.bin --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "### System:\nYou are an story writing assistant who writes very long, detailed and interesting stories\n\n### User:\nWrite a story about llamas\n\n### Input:\n{input}\n\n### Response:\n"

If you're able to use full GPU offloading, you should use -t 1 to get best performance.

If not able to fully offload to GPU, you should use more cores. Change -t 10 to the number of physical CPU cores you have, or a lower number depending on what gives best performance.

Change -ngl 32 to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.

If you want to have a chat-style conversation, replace the -p <PROMPT> argument with -i -ins

How to run in text-generation-webui

Further instructions here: text-generation-webui/docs/llama.cpp-models.md.

Discord

For further support, and discussions on these models and AI in general, join us at:

TheBloke AI's Discord server

Thanks, and how to contribute.

Thanks to the chirper.ai team!

I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.

If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.

Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.

Special thanks to: Luke from CarbonQuill, Aemon Algiz, Dmitriy Samsonov.

Patreon special mentions: Pyrater, WelcomeToTheClub, Kalila, Mano Prime, Trenton Dambrowitz, Spiking Neurons AB, Pierre Kircher, Fen Risland, Kevin Schuppel, Luke, Rainer Wilmers, vamX, Gabriel Puliatti, Alex , Karl Bernard, Ajan Kanaga, Talal Aujan, Space Cruiser, ya boyyy, biorpg, Johann-Peter Hartmann, Asp the Wyvern, Ai Maven, Ghost , Preetika Verma, Nikolai Manek, trip7s trip, John Detwiler, Fred von Graf, Artur Olbinski, subjectnull, John Villwock, Junyu Yang, Rod A, Lone Striker, Chris McCloskey, Iucharbius , Matthew Berman, Illia Dulskyi, Khalefa Al-Ahmad, Imad Khwaja, chris gileta, Willem Michiel, Greatston Gnanesh, Derek Yates, K, Alps Aficionado, Oscar Rangel, David Flickinger, Luke Pendergrass, Deep Realms, Eugene Pentland, Cory Kujawski, terasurfer , Jonathan Leane, senxiiz, Joseph William Delisle, Sean Connelly, webtim, zynix , Nathan LeClaire.

Thank you to all my generous patrons and donaters!

Original model card: Pankaj Mathur's Orca Mini 7B

orca_mini_7b

An OpenLLaMa-7B model model trained on explain tuned datasets, created using Instructions and Input from WizardLM, Alpaca & Dolly-V2 datasets and applying Orca Research Paper dataset construction approaches.

Dataset

We build explain tuned WizardLM dataset ~70K, Alpaca dataset ~52K & Dolly-V2 dataset ~15K created using approaches from Orca Research Paper.

We leverage all of the 15 system instructions provided in Orca Research Paper. to generate custom datasets, in contrast to vanilla instruction tuning approaches used by original datasets.

This helps student model aka this model to learn thought process from teacher model, which is ChatGPT (gpt-3.5-turbo-0301 version).

Please see below example usage how the System prompt is added before each instruction.

Training

The training configurations are provided in the table below.

The training takes on 8x A100(80G) GPUs and lasts for around 7 Hours for cost of $84 using Lambda Labs

We used DeepSpeed with fully sharded data parallelism, also know as ZeRO stage 3 by writing our own fine tunning scripts plus leveraging some of the model training code provided by amazing OpenAlpaca repo

Here are some of params used during training:

batch_size 32
train_micro_batch_size_per_gpu 2
gradient_accumulation_steps 2
Learning rate 2e-5
Max length 1024
Epochs 3
Optimizer AdamW

Example Usage

Below shows an example on how to use this model

import torch
from transformers import LlamaForCausalLM, LlamaTokenizer

# Hugging Face model_path
model_path = 'psmathur/orca_mini_7b'
tokenizer = LlamaTokenizer.from_pretrained(model_path)
model = LlamaForCausalLM.from_pretrained(
    model_path, torch_dtype=torch.float16, device_map='auto',
)


#generate text function
def generate_text(system, instruction, input=None):
    
    if input:
        prompt = f"### System:\n{system}\n\n### User:\n{instruction}\n\n### Input:\n{input}\n\n### Response:\n"
    else:
        prompt = f"### System:\n{system}\n\n### User:\n{instruction}\n\n### Response:\n"
    
    tokens = tokenizer.encode(prompt)
    tokens = torch.LongTensor(tokens).unsqueeze(0)
    tokens = tokens.to('cuda')

    instance = {'input_ids': tokens,'top_p': 1.0, 'temperature':0.7, 'generate_len': 1024, 'top_k': 50}

    length = len(tokens[0])
    with torch.no_grad():
        rest = model.generate(
            input_ids=tokens, 
            max_length=length+instance['generate_len'], 
            use_cache=True, 
            do_sample=True, 
            top_p=instance['top_p'],
            temperature=instance['temperature'],
            top_k=instance['top_k']
        )    
    output = rest[0][length:]
    string = tokenizer.decode(output, skip_special_tokens=True)
    return f'[!] Response: {string}'

# Sample Test Instruction Used by Youtuber Sam Witteveen https://www.youtube.com/@samwitteveenai
system = 'You are an AI assistant that follows instruction extremely well. Help as much as you can.'
instruction = 'Write a letter to Sam Altman, CEO of OpenAI, requesting him to convert GPT4 a private model by OpenAI to an open source project'
print(generate_text(system, instruction))

[!] Response:
Dear Sam Altman,

I am writing to request that you convert the GPT4 private model developed by OpenAI to an open source project. As a user of OpenAI, I have been waiting for the day when I can use the advanced natural language processing capabilities of GPT4 in a more open and accessible way.

While OpenAI has made significant progress in developing AI applications, it has primarily focused on building private models that are not accessible to the general public. However, with the recent release of GPT-3, there is a growing demand for more open and accessible AI tools.

Converting GPT4 to an open source project would allow for greater transparency, collaboration, and innovation. It would also help to build trust in the technology and ensure that it is used ethically and responsibly.

I urge you to consider converting GPT4 to an open source project. This would be a significant contribution to the AI community and would help to create a more open and accessible future.

Thank you for your consideration.

Sincerely,

[Your Name]

P.S. I am #opentowork and #collaboration, if you can help, please reach out to me at psmathur.public@gmail.com

Next Goals:

  1. Try more data like actually using FLAN-v2, just like Orka Research Paper (I am open for suggestions)
  2. Provide more options for Text generation UI. (may be https://github.com/oobabooga/text-generation-webui)
  3. Provide 4bit GGML/GPTQ quantized model (may be TheBloke can help here)

Limitations & Biases:

This model can produce factually incorrect output, and should not be relied on to produce factually accurate information. This model was trained on various public datasets. While great efforts have been taken to clean the pretraining data, it is possible that this model could generate lewd, biased or otherwise offensive outputs.

Disclaimer:

The license on this model does not constitute legal advice. We are not responsible for the actions of third parties who use this model. Please cosult an attorney before using this model for commercial purposes.

Citiation:

If you found wizardlm_alpaca_dolly_orca_open_llama_7b useful in your research or applications, please kindly cite using the following BibTeX:

@misc{wizardlm_alpaca_dolly_orca_open_llama_7b,
  author = {Pankaj Mathur},
  title = {wizardlm_alpaca_dolly_orca_open_llama_7b: An explain tuned OpenLLaMA-7b model on custom wizardlm, alpaca, & dolly datasets},
  year = {2023},
  publisher = {GitHub, HuggingFace},
  journal = {GitHub repository, HuggingFace repository},
  howpublished = {\url{https://github.com/pankajarm/wizardlm_alpaca_dolly_orca_open_llama_7b}, \url{https://https://huggingface.co/psmathur/wizardlm_alpaca_dolly_orca_open_llama_7b}},
}
@software{openlm2023openllama,
  author = {Xinyang Geng and Hao Liu},
  title = {OpenLLaMA: An Open Reproduction of LLaMA},
  month = May,
  year = 2023,
  url = {https://github.com/openlm-research/open_llama}
}
@misc{openalpaca,
  author = {Yixuan Su and Tian Lan and Deng Cai},
  title = {OpenAlpaca: A Fully Open-Source Instruction-Following Model Based On OpenLLaMA},
  year = {2023},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/yxuansu/OpenAlpaca}},
}
@misc{alpaca,
  author = {Rohan Taori and Ishaan Gulrajani and Tianyi Zhang and Yann Dubois and Xuechen Li and Carlos Guestrin and Percy Liang and Tatsunori B. Hashimoto },
  title = {Stanford Alpaca: An Instruction-following LLaMA model},
  year = {2023},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/tatsu-lab/stanford_alpaca}},
}
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Inference API (serverless) has been turned off for this model.

Datasets used to train TheBloke/orca_mini_7B-GGML