datasets:
- bavest/fin-llama-dataset
inference: false
license: other
model_type: llama
tags:
- finance
- llm
- llama
- trading
TheBloke's LLM work is generously supported by a grant from andreessen horowitz (a16z)
Bavest's Fin Llama 33B GPTQ
These files are GPTQ model files for Bavest's Fin Llama 33B.
Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
These models were quantised using hardware kindly provided by Latitude.sh.
Repositories available
- GPTQ models for GPU inference, with multiple quantisation parameter options.
- 2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference
- Unquantised fp16 model in pytorch format, for GPU inference and for further conversions
Prompt template: Alpaca
Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction: {prompt}
### Response:
Provided files
Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
Each separate quant is in a different branch. See below for instructions on fetching from different branches.
Branch | Bits | Group Size | Act Order (desc_act) | File Size | ExLlama Compatible? | Made With | Description |
---|---|---|---|---|---|---|---|
main | 4 | None | True | 16.94 GB | True | GPTQ-for-LLaMa | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. |
gptq-4bit-32g-actorder_True | 4 | 32 | True | 19.44 GB | True | AutoGPTQ | 4-bit, with Act Order and group size. 32g gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. |
gptq-4bit-64g-actorder_True | 4 | 64 | True | 18.18 GB | True | AutoGPTQ | 4-bit, with Act Order and group size. 64g uses less VRAM than 32g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
gptq-4bit-128g-actorder_True | 4 | 128 | True | 17.55 GB | True | AutoGPTQ | 4-bit, with Act Order and group size. 128g uses even less VRAM, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
gptq-8bit--1g-actorder_True | 8 | None | True | 32.99 GB | False | AutoGPTQ | 8-bit, with Act Order. No group size, to lower VRAM requirements and to improve AutoGPTQ speed. |
gptq-8bit-128g-actorder_False | 8 | 128 | False | 33.73 GB | False | AutoGPTQ | 8-bit, with group size 128g for higher inference quality and without Act Order to improve AutoGPTQ speed. |
gptq-3bit--1g-actorder_True | 3 | None | True | 12.92 GB | False | AutoGPTQ | 3-bit, with Act Order and no group size. Lowest possible VRAM requirements. May be lower quality than 3-bit 128g. |
gptq-3bit-128g-actorder_False | 3 | 128 | False | 13.51 GB | False | AutoGPTQ | 3-bit, with group size 128g but no act-order. Slightly higher VRAM requirements than 3-bit None. |
How to download from branches
- In text-generation-webui, you can add
:branch
to the end of the download name, egTheBloke/fin-llama-33B-GPTQ:gptq-4bit-32g-actorder_True
- With Git, you can clone a branch with:
git clone --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/fin-llama-33B-GPTQ`
- In Python Transformers code, the branch is the
revision
parameter; see below.
How to easily download and use this model in text-generation-webui.
Please make sure you're using the latest version of text-generation-webui.
It is strongly recommended to use the text-generation-webui one-click-installers unless you know how to make a manual install.
- Click the Model tab.
- Under Download custom model or LoRA, enter
TheBloke/fin-llama-33B-GPTQ
.
- To download from a specific branch, enter for example
TheBloke/fin-llama-33B-GPTQ:gptq-4bit-32g-actorder_True
- see Provided Files above for the list of branches for each option.
- Click Download.
- The model will start downloading. Once it's finished it will say "Done"
- In the top left, click the refresh icon next to Model.
- In the Model dropdown, choose the model you just downloaded:
fin-llama-33B-GPTQ
- The model will automatically load, and is now ready for use!
- If you want any custom settings, set them and then click Save settings for this model followed by Reload the Model in the top right.
- Note that you do not need to set GPTQ parameters any more. These are set automatically from the file
quantize_config.json
.
- Once you're ready, click the Text Generation tab and enter a prompt to get started!
How to use this GPTQ model from Python code
First make sure you have AutoGPTQ installed:
GITHUB_ACTIONS=true pip install auto-gptq
Then try the following example code:
from transformers import AutoTokenizer, pipeline, logging
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
model_name_or_path = "TheBloke/fin-llama-33B-GPTQ"
model_basename = "fin-llama-33b-GPTQ-4bit--1g.act.order"
use_triton = False
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
model_basename=model_basename
use_safetensors=True,
trust_remote_code=False,
device="cuda:0",
use_triton=use_triton,
quantize_config=None)
"""
To download from a specific branch, use the revision parameter, as in this example:
model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
revision="gptq-4bit-32g-actorder_True",
model_basename=model_basename,
use_safetensors=True,
trust_remote_code=False,
device="cuda:0",
quantize_config=None)
"""
prompt = "Tell me about AI"
prompt_template=f'''Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction: {prompt}
### Response:
'''
print("\n\n*** Generate:")
input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
output = model.generate(inputs=input_ids, temperature=0.7, max_new_tokens=512)
print(tokenizer.decode(output[0]))
# Inference can also be done using transformers' pipeline
# Prevent printing spurious transformers error when using pipeline with AutoGPTQ
logging.set_verbosity(logging.CRITICAL)
print("*** Pipeline:")
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
max_new_tokens=512,
temperature=0.7,
top_p=0.95,
repetition_penalty=1.15
)
print(pipe(prompt_template)[0]['generated_text'])
Compatibility
The files provided will work with AutoGPTQ (CUDA and Triton modes), GPTQ-for-LLaMa (only CUDA has been tested), and Occ4m's GPTQ-for-LLaMa fork.
ExLlama works with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.
Discord
For further support, and discussions on these models and AI in general, join us at:
Thanks, and how to contribute.
Thanks to the chirper.ai team!
I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
- Patreon: https://patreon.com/TheBlokeAI
- Ko-Fi: https://ko-fi.com/TheBlokeAI
Special thanks to: Aemon Algiz.
Patreon special mentions: Sam, theTransient, Jonathan Leane, Steven Wood, webtim, Johann-Peter Hartmann, Geoffrey Montalvo, Gabriel Tamborski, Willem Michiel, John Villwock, Derek Yates, Mesiah Bishop, Eugene Pentland, Pieter, Chadd, Stephen Murray, Daniel P. Andersen, terasurfer, Brandon Frisco, Thomas Belote, Sid, Nathan LeClaire, Magnesian, Alps Aficionado, Stanislav Ovsiannikov, Alex, Joseph William Delisle, Nikolai Manek, Michael Davis, Junyu Yang, K, J, Spencer Kim, Stefan Sabev, Olusegun Samson, transmissions 11, Michael Levine, Cory Kujawski, Rainer Wilmers, zynix, Kalila, Luke @flexchar, Ajan Kanaga, Mandus, vamX, Ai Maven, Mano Prime, Matthew Berman, subjectnull, Vitor Caleffi, Clay Pascal, biorpg, alfie_i, 阿明, Jeffrey Morgan, ya boyyy, Raymond Fosdick, knownsqashed, Olakabola, Leonard Tan, ReadyPlayerEmma, Enrico Ros, Dave, Talal Aujan, Illia Dulskyi, Sean Connelly, senxiiz, Artur Olbinski, Elle, Raven Klaugh, Fen Risland, Deep Realms, Imad Khwaja, Fred von Graf, Will Dee, usrbinkat, SuperWojo, Alexandros Triantafyllidis, Swaroop Kallakuri, Dan Guido, John Detwiler, Pedro Madruga, Iucharbius, Viktor Bowallius, Asp the Wyvern, Edmond Seymore, Trenton Dambrowitz, Space Cruiser, Spiking Neurons AB, Pyrater, LangChain4j, Tony Hughes, Kacper Wikieł, Rishabh Srivastava, David Ziegler, Luke Pendergrass, Andrey, Gabriel Puliatti, Lone Striker, Sebastain Graf, Pierre Kircher, Randy H, NimbleBox.ai, Vadim, danny, Deo Leter
Thank you to all my generous patrons and donaters!
And thank you again to a16z for their generous grant.
Original model card: Bavest's Fin Llama 33B
FIN-LLAMA
Efficient Finetuning of Quantized LLMs for Finance
Installation
To load models in 4bits with transformers and bitsandbytes, you have to install accelerate and transformers from source and make sure you have the latest version of the bitsandbytes library (0.39.0).
pip3 install -r requirements.txt
Other dependencies
If you want to finetune the model on a new instance. You could run
the setup.sh
to install the python and cuda package.
bash scripts/setup.sh
Finetuning
bash script/finetune.sh
Usage
Quantization parameters are controlled from the BitsandbytesConfig
- Loading in 4 bits is activated through
load_in_4bit
- The datatype used for the linear layer computations with
bnb_4bit_compute_dtype
- Nested quantization is activated through
bnb_4bit_use_double_quant
- The datatype used for qunatization is specified with
bnb_4bit_quant_type
. Note that there are two supported quantization datatypesfp4
(four bit float) andnf4
(normal four bit float). The latter is theoretically optimal for normally distributed weights and we recommend usingnf4
.
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
pretrained_model_name_or_path = "bavest/fin-llama-33b-merge"
model = AutoModelForCausalLM.from_pretrained(
pretrained_model_name_or_path=pretrained_model_name_or_path,
load_in_4bit=True,
device_map='auto',
torch_dtype=torch.bfloat16,
quantization_config=BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type='nf4'
),
)
tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path)
question = "What is the market cap of apple?"
input = "" # context if needed
prompt = f"""
A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's question.
'### Instruction:\n{question}\n\n### Input:{input}\n""\n\n### Response:
"""
input_ids = tokenizer.encode(prompt, return_tensors="pt").to('cuda:0')
with torch.no_grad():
generated_ids = model.generate(
input_ids,
do_sample=True,
top_p=0.9,
temperature=0.8,
max_length=128
)
generated_text = tokenizer.decode(
[el.item() for el in generated_ids[0]], skip_special_tokens=True
)
Dataset for FIN-LLAMA
The dataset is released under bigscience-openrail-m. You can find the dataset used to train FIN-LLAMA models on HF at bavest/fin-llama-dataset.
Known Issues and Limitations
Here a list of known issues and bugs. If your issue is not reported here, please open a new issue and describe the problem. See QLORA for any other limitations.
- 4-bit inference is slow. Currently, our 4-bit inference implementation is not yet integrated with the 4-bit matrix multiplication
- Currently, using
bnb_4bit_compute_type='fp16'
can lead to instabilities. - Make sure that
tokenizer.bos_token_id = 1
to avoid generation issues.
Acknowledgements
We also thank Meta for releasing the LLaMA models without which this work would not have been possible.
This repo builds on the Stanford Alpaca , QLORA, Chinese-Guanaco and LMSYS FastChat repos.
License and Intended Use
We release the resources associated with QLoRA finetuning in this repository under GLP3 license. In addition, we release the FIN-LLAMA model family for base LLaMA model sizes of 7B, 13B, 33B, and 65B. These models are intended for purposes in line with the LLaMA license and require access to the LLaMA models.
Prompts
Act as an Accountant
I want you to act as an accountant and come up with creative ways to manage finances. You'll need to consider budgeting, investment strategies and risk management when creating a financial plan for your client. In some cases, you may also need to provide advice on taxation laws and regulations in order to help them maximize their profits. My first suggestion request is “Create a financial plan for a small business that focuses on cost savings and long-term investments".
Paged Optimizer
You can access the paged optimizer with the argument --optim paged_adamw_32bit
Cite
@misc{Fin-LLAMA,
author = {William Todt, Ramtin Babaei, Pedram Babaei},
title = {Fin-LLAMA: Efficient Finetuning of Quantized LLMs for Finance},
year = {2023},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/Bavest/fin-llama}},
}