TheBloke commited on
Commit
22f94ba
1 Parent(s): 84c484b

Initial GPTQ model commit

Browse files
Files changed (1) hide show
  1. README.md +12 -10
README.md CHANGED
@@ -32,10 +32,11 @@ pipeline_tag: text-generation
32
 
33
  ## Description
34
 
35
- These repo contains GPTQ model files for [Stability AI's FreeWilly 2](https://huggingface.co/stabilityai/FreeWilly2).
36
 
37
  Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
38
 
 
39
 
40
  ## Repositories available
41
 
@@ -62,10 +63,11 @@ Each separate quant is in a different branch. See below for instructions on fet
62
 
63
  | Branch | Bits | Group Size | Act Order (desc_act) | File Size | ExLlama Compatible? | Made With | Description |
64
  | ------ | ---- | ---------- | -------------------- | --------- | ------------------- | --------- | ----------- |
65
- | main | 4 | 128 | False | 36.65 GB | True | AutoGPTQ | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. |
66
- | gptq-4bit-32g-actorder_True | 4 | 32 | True | Processing, coming soon | True | AutoGPTQ | 4-bit, with Act Order and group size. 32g gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. |
67
- | gptq-4bit-64g-actorder_True | 4 | 64 | True | 37.99 GB | True | AutoGPTQ | 4-bit, with Act Order and group size. 64g uses less VRAM than 32g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
68
- | gptq-4bit-128g-actorder_True | 4 | 128 | True | Processing, coming soon | True | AutoGPTQ | 4-bit, with Act Order and group size. 128g uses even less VRAM, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
 
69
  | gptq-3bit--1g-actorder_True | 3 | None | True | 26.78 GB | False | AutoGPTQ | 3-bit, with Act Order and no group size. Lowest possible VRAM requirements. May be lower quality than 3-bit 128g. |
70
  | gptq-3bit-128g-actorder_False | 3 | 128 | False | 28.03 GB | False | AutoGPTQ | 3-bit, with group size 128g but no act-order. Slightly higher VRAM requirements than 3-bit None. |
71
  | gptq-3bit-128g-actorder_True | 3 | 128 | True | 28.03 GB | False | AutoGPTQ | 3-bit, with group size 128g and act-order. Higher quality than 128g-False but poor AutoGPTQ CUDA speed. |
@@ -73,10 +75,10 @@ Each separate quant is in a different branch. See below for instructions on fet
73
 
74
  ## How to download from branches
75
 
76
- - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/FreeWilly2-GPTQ:gptq-4bit-32g-actorder_True`
77
  - With Git, you can clone a branch with:
78
  ```
79
- git clone --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/FreeWilly2-GPTQ`
80
  ```
81
  - In Python Transformers code, the branch is the `revision` parameter; see below.
82
 
@@ -88,7 +90,7 @@ It is strongly recommended to use the text-generation-webui one-click-installers
88
 
89
  1. Click the **Model tab**.
90
  2. Under **Download custom model or LoRA**, enter `TheBloke/FreeWilly2-GPTQ`.
91
- - To download from a specific branch, enter for example `TheBloke/FreeWilly2-GPTQ:gptq-4bit-32g-actorder_True`
92
  - see Provided Files above for the list of branches for each option.
93
  3. Click **Download**.
94
  4. The model will start downloading. Once it's finished it will say "Done"
@@ -112,7 +114,7 @@ from transformers import AutoTokenizer, pipeline, logging
112
  from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
113
 
114
  model_name_or_path = "TheBloke/FreeWilly2-GPTQ"
115
- model_basename = "gptq_model-4bit-128g"
116
 
117
  use_triton = False
118
 
@@ -130,7 +132,7 @@ model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
130
  To download from a specific branch, use the revision parameter, as in this example:
131
 
132
  model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
133
- revision="gptq-4bit-32g-actorder_True",
134
  model_basename=model_basename,
135
  use_safetensors=True,
136
  trust_remote_code=False,
 
32
 
33
  ## Description
34
 
35
+ This repo contains GPTQ model files for [Stability AI's FreeWilly 2](https://huggingface.co/stabilityai/FreeWilly2).
36
 
37
  Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
38
 
39
+ None
40
 
41
  ## Repositories available
42
 
 
63
 
64
  | Branch | Bits | Group Size | Act Order (desc_act) | File Size | ExLlama Compatible? | Made With | Description |
65
  | ------ | ---- | ---------- | -------------------- | --------- | ------------------- | --------- | ----------- |
66
+ | main | 4 | None | True | 36652374352.00 GB | True | AutoGPTQ | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. |
67
+ | gptq-4bit-128g-actorder_False | 4 | 128 | False | 36.65 GB | True | AutoGPTQ | 4-bit, without Act Order and group size 128g. |
68
+ | gptq-4bit-32g-actorder_True | 4 | 32 | True | Processing, coming soon | True | AutoGPTQ | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. |
69
+ | gptq-4bit-64g-actorder_True | 4 | 64 | True | 37.99 GB | True | AutoGPTQ | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
70
+ | gptq-4bit-128g-actorder_True | 4 | 128 | True | Processing, coming soon | True | AutoGPTQ | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
71
  | gptq-3bit--1g-actorder_True | 3 | None | True | 26.78 GB | False | AutoGPTQ | 3-bit, with Act Order and no group size. Lowest possible VRAM requirements. May be lower quality than 3-bit 128g. |
72
  | gptq-3bit-128g-actorder_False | 3 | 128 | False | 28.03 GB | False | AutoGPTQ | 3-bit, with group size 128g but no act-order. Slightly higher VRAM requirements than 3-bit None. |
73
  | gptq-3bit-128g-actorder_True | 3 | 128 | True | 28.03 GB | False | AutoGPTQ | 3-bit, with group size 128g and act-order. Higher quality than 128g-False but poor AutoGPTQ CUDA speed. |
 
75
 
76
  ## How to download from branches
77
 
78
+ - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/FreeWilly2-GPTQ:gptq-4bit-128g-actorder_False`
79
  - With Git, you can clone a branch with:
80
  ```
81
+ git clone --branch gptq-4bit-128g-actorder_False https://huggingface.co/TheBloke/FreeWilly2-GPTQ`
82
  ```
83
  - In Python Transformers code, the branch is the `revision` parameter; see below.
84
 
 
90
 
91
  1. Click the **Model tab**.
92
  2. Under **Download custom model or LoRA**, enter `TheBloke/FreeWilly2-GPTQ`.
93
+ - To download from a specific branch, enter for example `TheBloke/FreeWilly2-GPTQ:gptq-4bit-128g-actorder_False`
94
  - see Provided Files above for the list of branches for each option.
95
  3. Click **Download**.
96
  4. The model will start downloading. Once it's finished it will say "Done"
 
114
  from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
115
 
116
  model_name_or_path = "TheBloke/FreeWilly2-GPTQ"
117
+ model_basename = "gptq_model-4bit--1g"
118
 
119
  use_triton = False
120
 
 
132
  To download from a specific branch, use the revision parameter, as in this example:
133
 
134
  model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
135
+ revision="gptq-4bit-128g-actorder_False",
136
  model_basename=model_basename,
137
  use_safetensors=True,
138
  trust_remote_code=False,