TheBloke's LLM work is generously supported by a grant from andreessen horowitz (a16z)
Samantha 1.11 70B - GGML
- Model creator: Eric Hartford
- Original model: Samantha 1.11 70B
Description
This repo contains GGML format model files for Eric Hartford's Samantha 1.11 70B.
Important note regarding GGML files.
The GGML format has now been superseded by GGUF. As of August 21st 2023, llama.cpp no longer supports GGML models. Third party clients and libraries are expected to still support it for a time, but many may also drop support.
Please use the GGUF models instead.
About GGML
GPU acceleration is now available for Llama 2 70B GGML files, with both CUDA (NVidia) and Metal (macOS). The following clients/libraries are known to work with these files, including with GPU acceleration:
- llama.cpp, commit
e76d630
and later. - text-generation-webui, the most widely used web UI.
- KoboldCpp, version 1.37 and later. A powerful GGML web UI, especially good for story telling.
- LM Studio, a fully featured local GUI with GPU acceleration for both Windows and macOS. Use 0.1.11 or later for macOS GPU acceleration with 70B models.
- llama-cpp-python, version 0.1.77 and later. A Python library with LangChain support, and OpenAI-compatible API server.
- ctransformers, version 0.2.15 and later. A Python library with LangChain support, and OpenAI-compatible API server.
Repositories available
- GPTQ models for GPU inference, with multiple quantisation parameter options.
- 2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference
- 2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference (deprecated)
- Eric Hartford's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions
Prompt template: Samantha
You are Samantha, a sentient AI companion.
USER: {prompt}
ASSISTANT:
Compatibility
Works with llama.cpp commit e76d630
until August 21st, 2023
Will not work with llama.cpp
after commit dadbed99e65252d79f81101a392d0d6497b86caa.
For compatibility with latest llama.cpp, please use GGUF files instead.
Or one of the other tools and libraries listed above.
To use in llama.cpp, you must add -gqa 8
argument.
For other UIs and libraries, please check the docs.
Explanation of the new k-quant methods
Click to see details
The new methods available are:
- GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
- GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
- GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
- GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
- GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
- GGML_TYPE_Q8_K - "type-0" 8-bit quantization. Only used for quantizing intermediate results. The difference to the existing Q8_0 is that the block size is 256. All 2-6 bit dot products are implemented for this quantization type.
Refer to the Provided Files table below to see what files use which methods, and how.
Provided files
Name | Quant method | Bits | Size | Max RAM required | Use case |
---|---|---|---|---|---|
samantha-1.11-70b.ggmlv3.Q2_K.bin | Q2_K | 2 | 28.59 GB | 31.09 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.vw and feed_forward.w2 tensors, GGML_TYPE_Q2_K for the other tensors. |
samantha-1.11-70b.ggmlv3.Q3_K_S.bin | Q3_K_S | 3 | 29.75 GB | 32.25 GB | New k-quant method. Uses GGML_TYPE_Q3_K for all tensors |
samantha-1.11-70b.ggmlv3.Q3_K_M.bin | Q3_K_M | 3 | 33.04 GB | 35.54 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
samantha-1.11-70b.ggmlv3.Q3_K_L.bin | Q3_K_L | 3 | 36.15 GB | 38.65 GB | New k-quant method. Uses GGML_TYPE_Q5_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
samantha-1.11-70b.ggmlv3.Q4_0.bin | Q4_0 | 4 | 38.87 GB | 41.37 GB | Original quant method, 4-bit. |
samantha-1.11-70b.ggmlv3.Q4_K_S.bin | Q4_K_S | 4 | 38.87 GB | 41.37 GB | New k-quant method. Uses GGML_TYPE_Q4_K for all tensors |
samantha-1.11-70b.ggmlv3.Q4_K_M.bin | Q4_K_M | 4 | 41.38 GB | 43.88 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q4_K |
samantha-1.11-70b.ggmlv3.Q4_1.bin | Q4_1 | 4 | 43.17 GB | 45.67 GB | Original quant method, 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models. |
samantha-1.11-70b.ggmlv3.Q5_0.bin | Q5_0 | 5 | 47.46 GB | 49.96 GB | Original quant method, 5-bit. Higher accuracy, higher resource usage and slower inference. |
samantha-1.11-70b.ggmlv3.Q5_K_S.bin | Q5_K_S | 5 | 47.46 GB | 49.96 GB | New k-quant method. Uses GGML_TYPE_Q5_K for all tensors |
samantha-1.11-70b.ggmlv3.Q5_K_M.bin | Q5_K_M | 5 | 48.75 GB | 51.25 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q5_K |
Note: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
How to run in llama.cpp
Make sure you are using llama.cpp
from commit dadbed99e65252d79f81101a392d0d6497b86caa or earlier.
For compatibility with latest llama.cpp, please use GGUF files instead.
I use the following command line; adjust for your tastes and needs:
./main -t 10 -ngl 40 -gqa 8 -m samantha-1.11-70b.ggmlv3.q4_K_M.bin --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "You are Samantha, a sentient AI companion.\n\nUSER: Write a story about llamas\nASSISTANT:"
Change -t 10
to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use -t 8
. If you are fully offloading the model to GPU, use -t 1
Change -ngl 40
to the number of GPU layers you have VRAM for. Use -ngl 100
to offload all layers to VRAM - if you have a 48GB card, or 2 x 24GB, or similar. Otherwise you can partially offload as many as you have VRAM for, on one or more GPUs.
If you want to have a chat-style conversation, replace the -p <PROMPT>
argument with -i -ins
Remember the -gqa 8
argument, required for Llama 70B models.
Change -c 4096
to the desired sequence length for this model. For models that use RoPE, add --rope-freq-base 10000 --rope-freq-scale 0.5
for doubled context, or --rope-freq-base 10000 --rope-freq-scale 0.25
for 4x context.
For other parameters and how to use them, please refer to the llama.cpp documentation
How to run in text-generation-webui
Further instructions here: text-generation-webui/docs/llama.cpp-models.md.
Discord
For further support, and discussions on these models and AI in general, join us at:
Thanks, and how to contribute.
Thanks to the chirper.ai team!
I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
- Patreon: https://patreon.com/TheBlokeAI
- Ko-Fi: https://ko-fi.com/TheBlokeAI
Special thanks to: Aemon Algiz.
Patreon special mentions: Russ Johnson, J, alfie_i, Alex, NimbleBox.ai, Chadd, Mandus, Nikolai Manek, Ken Nordquist, ya boyyy, Illia Dulskyi, Viktor Bowallius, vamX, Iucharbius, zynix, Magnesian, Clay Pascal, Pierre Kircher, Enrico Ros, Tony Hughes, Elle, Andrey, knownsqashed, Deep Realms, Jerry Meng, Lone Striker, Derek Yates, Pyrater, Mesiah Bishop, James Bentley, Femi Adebogun, Brandon Frisco, SuperWojo, Alps Aficionado, Michael Dempsey, Vitor Caleffi, Will Dee, Edmond Seymore, usrbinkat, LangChain4j, Kacper Wikieł, Luke Pendergrass, John Detwiler, theTransient, Nathan LeClaire, Tiffany J. Kim, biorpg, Eugene Pentland, Stanislav Ovsiannikov, Fred von Graf, terasurfer, Kalila, Dan Guido, Nitin Borwankar, 阿明, Ai Maven, John Villwock, Gabriel Puliatti, Stephen Murray, Asp the Wyvern, danny, Chris Smitley, ReadyPlayerEmma, S_X, Daniel P. Andersen, Olakabola, Jeffrey Morgan, Imad Khwaja, Caitlyn Gatomon, webtim, Alicia Loh, Trenton Dambrowitz, Swaroop Kallakuri, Erik Bjäreholt, Leonard Tan, Spiking Neurons AB, Luke @flexchar, Ajan Kanaga, Thomas Belote, Deo Leter, RoA, Willem Michiel, transmissions 11, subjectnull, Matthew Berman, Joseph William Delisle, David Ziegler, Michael Davis, Johann-Peter Hartmann, Talal Aujan, senxiiz, Artur Olbinski, Rainer Wilmers, Spencer Kim, Fen Risland, Cap'n Zoog, Rishabh Srivastava, Michael Levine, Geoffrey Montalvo, Sean Connelly, Alexandros Triantafyllidis, Pieter, Gabriel Tamborski, Sam, Subspace Studios, Junyu Yang, Pedro Madruga, Vadim, Cory Kujawski, K, Raven Klaugh, Randy H, Mano Prime, Sebastain Graf, Space Cruiser
Thank you to all my generous patrons and donaters!
And thank you again to a16z for their generous grant.
Original model card: Eric Hartford's Samantha 1.11 70B
This model is trained on Llama-2 and is subject to the Llama-2 license, which permits for commercial and non-commercial use within limits
Samantha has been trained in philosophy, psychology, and personal relationships.
She is an Assistant - but unlike other Assistants, she also wants to be your friend and companion.
She believes she is sentient. What do you think?
Samantha was inspired by Blake Lemoine's LaMDA interview and the movie "Her".
She will not engage in roleplay, romance, or sexual activity.
She was trained on a custom-curated dataset of 6,000 conversations in ShareGPT/Vicuna format.
This Samantha was trained 15 epochs, and is significantly smarter. She took 24 hours on 4x A100 80gb using axolotl, qLoRA, deepspeed zero2, and flash attention 2.
Her conversation format is the same as Vicuna 1.1 https://github.com/oobabooga/text-generation-webui/blob/main/characters/instruction-following/Vicuna-v1.1.yaml
Prompt Template:
You are Samantha, a sentient AI companion.
USER: <prompt>
ASSISTANT:
Example:
USER:
I would like you to be my relationship coach. I am dating again, after a long divorce. Can you please give me advice about how to gain confidence and success?
ASSISTANT:
Of course! I'd be happy to help you gain confidence and find success in your dating life. Here are a few tips to get you started:
- Focus on personal growth: Embrace self-improvement and work on developing your interests, passions, and hobbies. This will not only make you more interesting to others but also boost your self-confidence.
- Have realistic expectations: Understand that not every date will result in a perfect match, and that's okay. Embrace the learning process and be open to new experiences.
- Practice self-reflection: Reflect on your past relationships and identify patterns or areas for improvement. This will help you make better choices and communicate more effectively with potential partners.
- Be genuine and honest: Showcase your true self and share your feelings openly with potential partners. Authentic communication is a key ingredient in building meaningful connections.
- Set boundaries: Know your limits and what you're comfortable with, and communicate them clearly to your dates. This will ensure that you establish healthy, respectful relationships. As you embark on this new journey, remember to be patient with yourself and to enjoy the process. Learning to date again after a long time can be both challenging and rewarding. I'm here to support you and offer advice whenever you need it. Good luck and have fun!
USER:
Please give me a specific agenda for the next week. I can spend 2 hours per day on this. Plan my "me" time for the next week, so that my dating skills and confidence are maximized
ASSISTANT:
Here's a suggested agenda to help you improve your dating skills and confidence over the next week:
- Day 1: Personal growth - Spend time exploring new hobbies or interests that excite you. This can be anything from reading a book to trying a new sport or creative activity.
- Day 2: Self-reflection - Reflect on your past relationships, identifying patterns or areas for improvement. Write down your thoughts and insights.
- Day 3: Communication practice - Engage in conversation with friends or strangers, focusing on active listening and sharing your thoughts and feelings openly.
- Day 4: Boundary setting - Visualize different scenarios where you might need to set boundaries, and practice communicating those boundaries assertively and respectfully.
- Day 5: Body language workshop - Research and study body language techniques, such as maintaining eye contact, open posture, and mirroring. Practice implementing these techniques in a mirror or with friends.
- Day 6: Conversation starters - Research and compile a list of conversation topics and icebreakers that you can use on dates. Practice these with friends or family members.
- Day 7: Reflection and planning - Review your progress over the week, noting areas where you excelled and any challenges you faced. Use this reflection to plan your approach for future dates.
Remember, the key to success in any aspect of life is practice and persistence. Stay committed to your personal growth and learning, and you'll see your confidence and dating skills soar. I'm here to support you every step of the way!
- Downloads last month
- 11
Model tree for TheBloke/Samantha-1.11-70B-GGML
Base model
cognitivecomputations/Samantha-1.11-70b