|
--- |
|
base_model: amazon/MistralLite |
|
inference: false |
|
license: apache-2.0 |
|
model_creator: Amazon Web Services |
|
model_name: MistralLite 7B |
|
model_type: mistral |
|
prompt_template: '<|prompter|>{prompt}</s><|assistant|> |
|
|
|
' |
|
quantized_by: TheBloke |
|
--- |
|
<!-- markdownlint-disable MD041 --> |
|
|
|
<!-- header start --> |
|
<!-- 200823 --> |
|
<div style="width: auto; margin-left: auto; margin-right: auto"> |
|
<img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> |
|
</div> |
|
<div style="display: flex; justify-content: space-between; width: 100%;"> |
|
<div style="display: flex; flex-direction: column; align-items: flex-start;"> |
|
<p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p> |
|
</div> |
|
<div style="display: flex; flex-direction: column; align-items: flex-end;"> |
|
<p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> |
|
</div> |
|
</div> |
|
<div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div> |
|
<hr style="margin-top: 1.0em; margin-bottom: 1.0em;"> |
|
<!-- header end --> |
|
|
|
# MistralLite 7B - AWQ |
|
- Model creator: [Amazon Web Services](https://huggingface.co/amazon) |
|
- Original model: [MistralLite 7B](https://huggingface.co/amazon/MistralLite) |
|
|
|
<!-- description start --> |
|
## Description |
|
|
|
This repo contains AWQ model files for [Amazon Web Services's MistralLite 7B](https://huggingface.co/amazon/MistralLite). |
|
|
|
|
|
### About AWQ |
|
|
|
AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings. |
|
|
|
It is supported by: |
|
|
|
- [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ |
|
- [vLLM](https://github.com/vllm-project/vllm) - Llama and Mistral models only |
|
- [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) |
|
- [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code |
|
|
|
<!-- description end --> |
|
<!-- repositories-available start --> |
|
## Repositories available |
|
|
|
* [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/MistralLite-7B-AWQ) |
|
* [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/MistralLite-7B-GPTQ) |
|
* [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/MistralLite-7B-GGUF) |
|
* [Amazon Web Services's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/amazon/MistralLite) |
|
<!-- repositories-available end --> |
|
|
|
<!-- prompt-template start --> |
|
## Prompt template: Amazon |
|
|
|
``` |
|
<|prompter|>{prompt}</s><|assistant|> |
|
|
|
``` |
|
|
|
<!-- prompt-template end --> |
|
|
|
|
|
<!-- README_AWQ.md-provided-files start --> |
|
## Provided files, and AWQ parameters |
|
|
|
For my first release of AWQ models, I am releasing 128g models only. I will consider adding 32g as well if there is interest, and once I have done perplexity and evaluation comparisons, but at this time 32g models are still not fully tested with AutoAWQ and vLLM. |
|
|
|
Models are released as sharded safetensors files. |
|
|
|
| Branch | Bits | GS | AWQ Dataset | Seq Len | Size | |
|
| ------ | ---- | -- | ----------- | ------- | ---- | |
|
| [main](https://huggingface.co/TheBloke/MistralLite-7B-AWQ/tree/main) | 4 | 128 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 4.15 GB |
|
|
|
<!-- README_AWQ.md-provided-files end --> |
|
|
|
<!-- README_AWQ.md-text-generation-webui start --> |
|
## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui) |
|
|
|
Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui). |
|
|
|
It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install. |
|
|
|
1. Click the **Model tab**. |
|
2. Under **Download custom model or LoRA**, enter `TheBloke/MistralLite-7B-AWQ`. |
|
3. Click **Download**. |
|
4. The model will start downloading. Once it's finished it will say "Done". |
|
5. In the top left, click the refresh icon next to **Model**. |
|
6. In the **Model** dropdown, choose the model you just downloaded: `MistralLite-7B-AWQ` |
|
7. Select **Loader: AutoAWQ**. |
|
8. Click Load, and the model will load and is now ready for use. |
|
9. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right. |
|
10. Once you're ready, click the **Text Generation** tab and enter a prompt to get started! |
|
<!-- README_AWQ.md-text-generation-webui end --> |
|
|
|
<!-- README_AWQ.md-use-from-vllm start --> |
|
## Multi-user inference server: vLLM |
|
|
|
Documentation on installing and using vLLM [can be found here](https://vllm.readthedocs.io/en/latest/). |
|
|
|
- Please ensure you are using vLLM version 0.2 or later. |
|
- When using vLLM as a server, pass the `--quantization awq` parameter. |
|
|
|
For example: |
|
|
|
```shell |
|
python3 python -m vllm.entrypoints.api_server --model TheBloke/MistralLite-7B-AWQ --quantization awq |
|
``` |
|
|
|
- When using vLLM from Python code, again set `quantization=awq`. |
|
|
|
For example: |
|
|
|
```python |
|
from vllm import LLM, SamplingParams |
|
|
|
prompts = [ |
|
"Tell me about AI", |
|
"Write a story about llamas", |
|
"What is 291 - 150?", |
|
"How much wood would a woodchuck chuck if a woodchuck could chuck wood?", |
|
] |
|
prompt_template=f'''<|prompter|>{prompt}</s><|assistant|> |
|
''' |
|
|
|
prompts = [prompt_template.format(prompt=prompt) for prompt in prompts] |
|
|
|
sampling_params = SamplingParams(temperature=0.8, top_p=0.95) |
|
|
|
llm = LLM(model="TheBloke/MistralLite-7B-AWQ", quantization="awq", dtype="auto") |
|
|
|
outputs = llm.generate(prompts, sampling_params) |
|
|
|
# Print the outputs. |
|
for output in outputs: |
|
prompt = output.prompt |
|
generated_text = output.outputs[0].text |
|
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}") |
|
``` |
|
<!-- README_AWQ.md-use-from-vllm start --> |
|
|
|
<!-- README_AWQ.md-use-from-tgi start --> |
|
## Multi-user inference server: Hugging Face Text Generation Inference (TGI) |
|
|
|
Use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0` |
|
|
|
Example Docker parameters: |
|
|
|
```shell |
|
--model-id TheBloke/MistralLite-7B-AWQ --port 3000 --quantize awq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096 |
|
``` |
|
|
|
Example Python code for interfacing with TGI (requires [huggingface-hub](https://github.com/huggingface/huggingface_hub) 0.17.0 or later): |
|
|
|
```shell |
|
pip3 install huggingface-hub |
|
``` |
|
|
|
```python |
|
from huggingface_hub import InferenceClient |
|
|
|
endpoint_url = "https://your-endpoint-url-here" |
|
|
|
prompt = "Tell me about AI" |
|
prompt_template=f'''<|prompter|>{prompt}</s><|assistant|> |
|
''' |
|
|
|
client = InferenceClient(endpoint_url) |
|
response = client.text_generation(prompt, |
|
max_new_tokens=128, |
|
do_sample=True, |
|
temperature=0.7, |
|
top_p=0.95, |
|
top_k=40, |
|
repetition_penalty=1.1) |
|
|
|
print(f"Model output: ", response) |
|
``` |
|
<!-- README_AWQ.md-use-from-tgi end --> |
|
|
|
<!-- README_AWQ.md-use-from-python start --> |
|
## Inference from Python code using AutoAWQ |
|
|
|
### Install the AutoAWQ package |
|
|
|
Requires: [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) 0.1.1 or later. |
|
|
|
```shell |
|
pip3 install autoawq |
|
``` |
|
|
|
If you have problems installing [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) using the pre-built wheels, install it from source instead: |
|
|
|
```shell |
|
pip3 uninstall -y autoawq |
|
git clone https://github.com/casper-hansen/AutoAWQ |
|
cd AutoAWQ |
|
pip3 install . |
|
``` |
|
|
|
### AutoAWQ example code |
|
|
|
```python |
|
from awq import AutoAWQForCausalLM |
|
from transformers import AutoTokenizer |
|
|
|
model_name_or_path = "TheBloke/MistralLite-7B-AWQ" |
|
|
|
# Load tokenizer |
|
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=False) |
|
# Load model |
|
model = AutoAWQForCausalLM.from_quantized(model_name_or_path, fuse_layers=True, |
|
trust_remote_code=False, safetensors=True) |
|
|
|
prompt = "Tell me about AI" |
|
prompt_template=f'''<|prompter|>{prompt}</s><|assistant|> |
|
''' |
|
|
|
print("*** Running model.generate:") |
|
|
|
token_input = tokenizer( |
|
prompt_template, |
|
return_tensors='pt' |
|
).input_ids.cuda() |
|
|
|
# Generate output |
|
generation_output = model.generate( |
|
token_input, |
|
do_sample=True, |
|
temperature=0.7, |
|
top_p=0.95, |
|
top_k=40, |
|
max_new_tokens=512 |
|
) |
|
|
|
# Get the tokens from the output, decode them, print them |
|
token_output = generation_output[0] |
|
text_output = tokenizer.decode(token_output) |
|
print("LLM output: ", text_output) |
|
|
|
""" |
|
# Inference should be possible with transformers pipeline as well in future |
|
# But currently this is not yet supported by AutoAWQ (correct as of September 25th 2023) |
|
from transformers import pipeline |
|
|
|
print("*** Pipeline:") |
|
pipe = pipeline( |
|
"text-generation", |
|
model=model, |
|
tokenizer=tokenizer, |
|
max_new_tokens=512, |
|
do_sample=True, |
|
temperature=0.7, |
|
top_p=0.95, |
|
top_k=40, |
|
repetition_penalty=1.1 |
|
) |
|
|
|
print(pipe(prompt_template)[0]['generated_text']) |
|
""" |
|
``` |
|
<!-- README_AWQ.md-use-from-python end --> |
|
|
|
<!-- README_AWQ.md-compatibility start --> |
|
## Compatibility |
|
|
|
The files provided are tested to work with: |
|
|
|
- [text-generation-webui](https://github.com/oobabooga/text-generation-webui) using `Loader: AutoAWQ`. |
|
- [vLLM](https://github.com/vllm-project/vllm) version 0.2.0 and later. |
|
- [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) version 1.1.0 and later. |
|
- [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) version 0.1.1 and later. |
|
|
|
<!-- README_AWQ.md-compatibility end --> |
|
|
|
<!-- footer start --> |
|
<!-- 200823 --> |
|
## Discord |
|
|
|
For further support, and discussions on these models and AI in general, join us at: |
|
|
|
[TheBloke AI's Discord server](https://discord.gg/theblokeai) |
|
|
|
## Thanks, and how to contribute |
|
|
|
Thanks to the [chirper.ai](https://chirper.ai) team! |
|
|
|
Thanks to Clay from [gpus.llm-utils.org](llm-utils)! |
|
|
|
I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. |
|
|
|
If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. |
|
|
|
Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. |
|
|
|
* Patreon: https://patreon.com/TheBlokeAI |
|
* Ko-Fi: https://ko-fi.com/TheBlokeAI |
|
|
|
**Special thanks to**: Aemon Algiz. |
|
|
|
**Patreon special mentions**: Pierre Kircher, Stanislav Ovsiannikov, Michael Levine, Eugene Pentland, Andrey, 준교 김, Randy H, Fred von Graf, Artur Olbinski, Caitlyn Gatomon, terasurfer, Jeff Scroggin, James Bentley, Vadim, Gabriel Puliatti, Harry Royden McLaughlin, Sean Connelly, Dan Guido, Edmond Seymore, Alicia Loh, subjectnull, AzureBlack, Manuel Alberto Morcote, Thomas Belote, Lone Striker, Chris Smitley, Vitor Caleffi, Johann-Peter Hartmann, Clay Pascal, biorpg, Brandon Frisco, sidney chen, transmissions 11, Pedro Madruga, jinyuan sun, Ajan Kanaga, Emad Mostaque, Trenton Dambrowitz, Jonathan Leane, Iucharbius, usrbinkat, vamX, George Stoitzev, Luke Pendergrass, theTransient, Olakabola, Swaroop Kallakuri, Cap'n Zoog, Brandon Phillips, Michael Dempsey, Nikolai Manek, danny, Matthew Berman, Gabriel Tamborski, alfie_i, Raymond Fosdick, Tom X Nguyen, Raven Klaugh, LangChain4j, Magnesian, Illia Dulskyi, David Ziegler, Mano Prime, Luis Javier Navarrete Lozano, Erik Bjäreholt, 阿明, Nathan Dryer, Alex, Rainer Wilmers, zynix, TL, Joseph William Delisle, John Villwock, Nathan LeClaire, Willem Michiel, Joguhyik, GodLy, OG, Alps Aficionado, Jeffrey Morgan, ReadyPlayerEmma, Tiffany J. Kim, Sebastain Graf, Spencer Kim, Michael Davis, webtim, Talal Aujan, knownsqashed, John Detwiler, Imad Khwaja, Deo Leter, Jerry Meng, Elijah Stavena, Rooh Singh, Pieter, SuperWojo, Alexandros Triantafyllidis, Stephen Murray, Ai Maven, ya boyyy, Enrico Ros, Ken Nordquist, Deep Realms, Nicholas, Spiking Neurons AB, Elle, Will Dee, Jack West, RoA, Luke @flexchar, Viktor Bowallius, Derek Yates, Subspace Studios, jjj, Toran Billups, Asp the Wyvern, Fen Risland, Ilya, NimbleBox.ai, Chadd, Nitin Borwankar, Emre, Mandus, Leonard Tan, Kalila, K, Trailburnt, S_X, Cory Kujawski |
|
|
|
|
|
Thank you to all my generous patrons and donaters! |
|
|
|
And thank you again to a16z for their generous grant. |
|
|
|
<!-- footer end --> |
|
|
|
# Original model card: Amazon Web Services's MistralLite 7B |
|
|
|
|
|
# MistralLite Model |
|
|
|
MistralLite is a fine-tuned [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) language model, with enhanced capabilities of processing long context (up to 32K tokens). By utilizing an adapted Rotary Embedding and sliding window during fine-tuning, MistralLite is able to **perform significantly better on several long context retrieve and answering tasks**, while keeping the simple model structure of the original model. MistralLite is useful for applications such as long context line and topic retrieval, summarization, question-answering, and etc. MistralLite can be deployed on a single AWS `g5.2x` instance with Sagemaker [Huggingface Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) endpoint, making it suitable for applications that require high performance in resource-constrained environments. You can also serve the MistralLite model directly using TGI docker containers. Also, MistralLite supports other ways of serving like [vLLM](https://github.com/vllm-project/vllm), and you can use MistralLite in Python by using the [HuggingFace transformers](https://huggingface.co/docs/transformers/index) and [FlashAttention-2](https://github.com/Dao-AILab/flash-attention) library. |
|
|
|
MistralLite is similar to [Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1), and their similarities and differences are summarized below: |
|
|Model|Fine-tuned on long contexts| Max context length| RotaryEmbedding adaptation| Sliding Window Size| |
|
|----------|-------------:|------------:|-----------:|-----------:| |
|
| Mistral-7B-Instruct-v0.1 | up to 8K tokens | 32K | rope_theta = 10000 | 4096 | |
|
| MistralLite | up to 16K tokens | 32K | **rope_theta = 1000000** | **16384** | |
|
|
|
## Motivation of Developing MistralLite |
|
|
|
Since the release of [Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1), the model became increasingly popular because its strong performance |
|
on a wide range of benchmarks. But most of the benchmarks are evaluated on `short context`, and not much has been investigated on its performance on long context tasks. |
|
Then We evaluated `Mistral-7B-Instruct-v0.1` against benchmarks that are specifically designed to assess the capabilities of LLMs in handling longer context. |
|
Although the performance of the models on long context was fairly competitive on long context less than 4096 tokens, |
|
there were some limitations on its performance on longer context. Motivated by improving its performance on longer context, we finetuned the Mistral 7B model, and produced `Mistrallite`. The model managed to `significantly boost the performance of long context handling` over Mistral-7B-Instruct-v0.1. The detailed `long context evalutaion results` are as below: |
|
|
|
1. [Topic Retrieval](https://lmsys.org/blog/2023-06-29-longchat/) |
|
|Model Name|Input length| Input length | Input length| Input length| Input length| |
|
|----------|-------------:|-------------:|------------:|-----------:|-----------:| |
|
| | 2851| 5568 |8313 | 11044 | 13780 |
|
| Mistral-7B-Instruct-v0.1 | 100% | 50% | 2% | 0% | 0% | |
|
| MistralLite | **100%** | **100%** | **100%** | **100%** | **98%** | |
|
|
|
2. [Line Retrieval](https://lmsys.org/blog/2023-06-29-longchat/#longeval-results) |
|
|
|
|Model Name|Input length| Input length | Input length| Input length| Input length|Input length| |
|
|----------|-------------:|-------------:|------------:|-----------:|-----------:|-----------:| |
|
| | 3818| 5661 |7505 | 9354 | 11188 | 12657 |
|
| Mistral-7B-Instruct-v0.1 | **98%** | 62% | 42% | 42% | 32% | 30% | |
|
| MistralLite | **98%** | **92%** | **88%** | **76%** | **70%** | **60%** | |
|
|
|
3. [Pass key Retrieval](https://github.com/epfml/landmark-attention/blob/main/llama/run_test.py#L101) |
|
|
|
|Model Name|Input length| Input length | Input length| Input length| |
|
|----------|-------------:|-------------:|------------:|-----------:| |
|
| | 3264| 5396 |8329 | 10197 | |
|
| Mistral-7B-Instruct-v0.1 | **100%** | 50% | 20% | 30% | |
|
| MistralLite | **100%** | **100%** | **100%** | **100%** | |
|
|
|
4. [Question Answering with Long Input Texts](https://nyu-mll.github.io/quality/) |
|
|Model Name| Test set Accuracy | Hard subset Accuracy| |
|
|----------|-------------:|-------------:| |
|
| Mistral-7B-Instruct-v0.1 | 44.3% | 39.7% | |
|
| MistralLite | **64.4%** | **56.2%** | |
|
|
|
### Example test on long context of 13400 tokens |
|
- Context is from [Amazon Aurora FAQs](https://aws.amazon.com/rds/aurora/faqs/) |
|
- Question: *please tell me how does pgvector help with Generative AI and give me some examples.* |
|
- Answer from MistralLite: |
|
```code |
|
pgvector is an open-source extension for PostgreSQL supported by Amazon Aurora PostgreSQL-Compatible Edition. |
|
|
|
You can use pgvector to store, search, index, and query billions of embeddings that are generated from machine learning (ML) and artificial intelligence (AI) models in your database, such as those from Amazon Bedrock (limited preview) or Amazon SageMaker. A vector embedding is a numerical representation that represents the semantic meaning of content such as text, images, and video. |
|
|
|
With pgvector, you can query embeddings in your Aurora PostgreSQL database to perform efficient semantic similarity searches of these data types, represented as vectors, combined with other tabular data in Aurora. This enables the use of generative AI and other AI/ML systems for new types of applications such as personalized recommendations based on similar text descriptions or images, candidate match based on interview notes, customer service next best action recommendations based on successful transcripts or chat session dialogs, and more. |
|
``` |
|
|
|
## Model Details |
|
|
|
- **Developed by:** [AWS Contributors](https://github.com/orgs/aws-samples/teams/aws-prototype-ml-apac) |
|
- **Model type:** [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) |
|
- **Language:** English |
|
- **Finetuned from weights:** [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) |
|
- **Finetuned on data:** |
|
- [SLidingEncoder and Decoder (SLED)](https://huggingface.co/datasets/tau/sled) |
|
- [(Long) Natural Questions (NQ)](https://huggingface.co/datasets/togethercomputer/Long-Data-Collections#multi-passage-qa-from-natural-questions) |
|
- [OpenAssistant Conversations Dataset (OASST1)](https://huggingface.co/datasets/OpenAssistant/oasst1) |
|
- **Supported Serving Framework:** |
|
- [Text-Generation-Inference 1.1.0](https://github.com/huggingface/text-generation-inference/tree/v1.1.0) |
|
- [vLLM](https://github.com/vllm-project/vllm) |
|
- [HuggingFace transformers](https://huggingface.co/docs/transformers/index) |
|
- [HuggingFace Text Generation Inference (TGI) container on SageMaker](https://github.com/awslabs/llm-hosting-container) |
|
- **Model License:** Apache 2.0 |
|
- **Contact:** [GitHub issues](https://github.com/awslabs/extending-the-context-length-of-open-source-llms/issues) |
|
- **Inference Code** [Github Repo](https://github.com/awslabs/extending-the-context-length-of-open-source-llms/blob/main/MistralLite/) |
|
|
|
## How to Use MistralLite from Python Code (HuggingFace transformers) ## |
|
|
|
**Important** - For an end-to-end example Jupyter notebook, please refer to [this link](https://github.com/awslabs/extending-the-context-length-of-open-source-llms/blob/main/MistralLite/huggingface-transformers/example_usage.ipynb). |
|
|
|
### Install the necessary packages |
|
|
|
Requires: [transformers](https://pypi.org/project/transformers/) 4.34.0 or later, [flash-attn](https://pypi.org/project/flash-attn/) 2.3.1.post1 or later, |
|
and [accelerate](https://pypi.org/project/accelerate/) 0.23.0 or later. |
|
|
|
```shell |
|
pip install transformers==4.34.0 |
|
pip install flash-attn==2.3.1.post1 --no-build-isolation |
|
pip install accelerate==0.23.0 |
|
``` |
|
### You can then try the following example code |
|
|
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import transformers |
|
import torch |
|
|
|
model_id = "amazon/MistralLite" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
model = AutoModelForCausalLM.from_pretrained(model_id, |
|
torch_dtype=torch.bfloat16, |
|
use_flash_attention_2=True, |
|
device_map="auto",) |
|
pipeline = transformers.pipeline( |
|
"text-generation", |
|
model=model, |
|
tokenizer=tokenizer, |
|
) |
|
prompt = "<|prompter|>What are the main challenges to support a long context for LLM?</s><|assistant|>" |
|
|
|
sequences = pipeline( |
|
prompt, |
|
max_new_tokens=400, |
|
do_sample=False, |
|
return_full_text=False, |
|
num_return_sequences=1, |
|
eos_token_id=tokenizer.eos_token_id, |
|
) |
|
for seq in sequences: |
|
print(f"{seq['generated_text']}") |
|
``` |
|
**Important** - Use the prompt template below for MistralLite: |
|
``` |
|
<|prompter|>What are the main challenges to support a long context for LLM?</s><|assistant|> |
|
``` |
|
|
|
## How to Serve MistralLite on TGI ## |
|
**Important:** |
|
- For an end-to-end example Jupyter notebook using the native TGI container, please refer to [this link](https://github.com/awslabs/extending-the-context-length-of-open-source-llms/blob/main/MistralLite/tgi/example_usage.ipynb). |
|
- If the **input context length is greater than 12K tokens**, it is recommended using a custom TGI container, please refer to [this link](https://github.com/awslabs/extending-the-context-length-of-open-source-llms/blob/main/MistralLite/tgi-custom/example_usage.ipynb). |
|
|
|
### Start TGI server ### |
|
Use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0` |
|
|
|
Example Docker parameters: |
|
|
|
```shell |
|
docker run -d --gpus all --shm-size 1g -p 443:80 -v $(pwd)/models:/data ghcr.io/huggingface/text-generation-inference:1.1.0 \ |
|
--model-id amazon/MistralLite \ |
|
--max-input-length 16000 \ |
|
--max-total-tokens 16384 \ |
|
--max-batch-prefill-tokens 16384 \ |
|
--trust-remote-code |
|
``` |
|
|
|
### Perform Inference ### |
|
Example Python code for inference with TGI (requires `text_generation` 0.6.1 or later): |
|
|
|
```shell |
|
pip install text_generation==0.6.1 |
|
``` |
|
|
|
```python |
|
from text_generation import Client |
|
|
|
SERVER_PORT = 443 |
|
SERVER_HOST = "localhost" |
|
SERVER_URL = f"{SERVER_HOST}:{SERVER_PORT}" |
|
tgi_client = Client(f"http://{SERVER_URL}", timeout=60) |
|
|
|
def invoke_tgi(prompt, |
|
random_seed=1, |
|
max_new_tokens=400, |
|
print_stream=True, |
|
assist_role=True): |
|
if (assist_role): |
|
prompt = f"<|prompter|>{prompt}</s><|assistant|>" |
|
output = "" |
|
for response in tgi_client.generate_stream( |
|
prompt, |
|
do_sample=False, |
|
max_new_tokens=max_new_tokens, |
|
return_full_text=False, |
|
#temperature=None, |
|
#truncate=None, |
|
#seed=random_seed, |
|
#typical_p=0.2, |
|
): |
|
if hasattr(response, "token"): |
|
if not response.token.special: |
|
snippet = response.token.text |
|
output += snippet |
|
if (print_stream): |
|
print(snippet, end='', flush=True) |
|
return output |
|
|
|
prompt = "What are the main challenges to support a long context for LLM?" |
|
result = invoke_tgi(prompt) |
|
``` |
|
|
|
**Important** - When using MistralLite for inference for the first time, it may require a brief 'warm-up' period that can take 10s of seconds. However, subsequent inferences should be faster and return results in a more timely manner. This warm-up period is normal and should not affect the overall performance of the system once the initialisation period has been completed. |
|
|
|
|
|
## How to Deploy MistralLite on Amazon SageMaker ## |
|
**Important:** |
|
- For an end-to-end example Jupyter notebook using the SageMaker built-in container, please refer to [this link](https://github.com/awslabs/extending-the-context-length-of-open-source-llms/blob/main/MistralLite/sagemaker-tgi/example_usage.ipynb). |
|
- If the **input context length is greater than 12K tokens**, it is recommended using a custom docker container, please refer to [this link](https://github.com/awslabs/extending-the-context-length-of-open-source-llms/blob/main/MistralLite/sagemaker-tgi-custom/example_usage.ipynb). |
|
|
|
### Install the necessary packages |
|
|
|
Requires: [sagemaker](https://pypi.org/project/sagemaker/) 2.192.1 or later. |
|
|
|
```shell |
|
pip install sagemaker==2.192.1 |
|
``` |
|
|
|
### Deploy the Model as A SageMaker Endpoint ### |
|
To deploy MistralLite on a SageMaker endpoint, please follow the example code as below. |
|
```python |
|
import sagemaker |
|
from sagemaker.huggingface import HuggingFaceModel, get_huggingface_llm_image_uri |
|
import time |
|
|
|
sagemaker_session = sagemaker.Session() |
|
region = sagemaker_session.boto_region_name |
|
role = sagemaker.get_execution_role() |
|
|
|
image_uri = get_huggingface_llm_image_uri( |
|
backend="huggingface", # or lmi |
|
region=region, |
|
version="1.1.0" |
|
) |
|
|
|
model_name = "MistralLite-" + time.strftime("%Y-%m-%d-%H-%M-%S", time.gmtime()) |
|
|
|
hub = { |
|
'HF_MODEL_ID':'amazon/MistralLite', |
|
'HF_TASK':'text-generation', |
|
'SM_NUM_GPUS':'1', |
|
"MAX_INPUT_LENGTH": '16000', |
|
"MAX_TOTAL_TOKENS": '16384', |
|
"MAX_BATCH_PREFILL_TOKENS": '16384', |
|
"MAX_BATCH_TOTAL_TOKENS": '16384', |
|
} |
|
|
|
model = HuggingFaceModel( |
|
name=model_name, |
|
env=hub, |
|
role=role, |
|
image_uri=image_uri |
|
) |
|
predictor = model.deploy( |
|
initial_instance_count=1, |
|
instance_type="ml.g5.2xlarge", |
|
endpoint_name=model_name, |
|
|
|
) |
|
``` |
|
|
|
### Perform Inference ### |
|
To call the endpoint, please follow the example code as below: |
|
|
|
```python |
|
input_data = { |
|
"inputs": "<|prompter|>What are the main challenges to support a long context for LLM?</s><|assistant|>", |
|
"parameters": { |
|
"do_sample": False, |
|
"max_new_tokens": 400, |
|
"return_full_text": False, |
|
#"typical_p": 0.2, |
|
#"temperature":None, |
|
#"truncate":None, |
|
#"seed": 1, |
|
} |
|
} |
|
result = predictor.predict(input_data)[0]["generated_text"] |
|
print(result) |
|
``` |
|
or via [boto3](https://pypi.org/project/boto3/), and the example code is shown as below: |
|
|
|
```python |
|
import boto3 |
|
import json |
|
def call_endpoint(client, prompt, endpoint_name, paramters): |
|
client = boto3.client("sagemaker-runtime") |
|
payload = {"inputs": prompt, |
|
"parameters": parameters} |
|
response = client.invoke_endpoint(EndpointName=endpoint_name, |
|
Body=json.dumps(payload), |
|
ContentType="application/json") |
|
output = json.loads(response["Body"].read().decode()) |
|
result = output[0]["generated_text"] |
|
return result |
|
|
|
client = boto3.client("sagemaker-runtime") |
|
parameters = { |
|
"do_sample": False, |
|
"max_new_tokens": 400, |
|
"return_full_text": False, |
|
#"typical_p": 0.2, |
|
#"temperature":None, |
|
#"truncate":None, |
|
#"seed": 1, |
|
} |
|
endpoint_name = predictor.endpoint_name |
|
prompt = "<|prompter|>What are the main challenges to support a long context for LLM?</s><|assistant|>" |
|
result = call_endpoint(client, prompt, endpoint_name, parameters) |
|
print(result) |
|
``` |
|
|
|
|
|
## How to Serve MistralLite on vLLM ## |
|
Documentation on installing and using vLLM [can be found here](https://vllm.readthedocs.io/en/latest/). |
|
|
|
**Important** - For an end-to-end example Jupyter notebook, please refer to [this link](https://github.com/awslabs/extending-the-context-length-of-open-source-llms/blob/main/MistralLite/vllm/example_usage.ipynb). |
|
|
|
### Using vLLM as a server ### |
|
When using vLLM as a server, pass the --model amazon/MistralLite parameter, for example: |
|
```shell |
|
python3 -m vllm.entrypoints.api_server --model amazon/MistralLite |
|
``` |
|
|
|
### Using vLLM in Python Code ### |
|
When using vLLM from Python code, Please see the example code as below: |
|
|
|
```python |
|
from vllm import LLM, SamplingParams |
|
|
|
prompts = [ |
|
"<|prompter|>What are the main challenges to support a long context for LLM?</s><|assistant|>", |
|
] |
|
sampling_params = SamplingParams(temperature=0, max_tokens=100) |
|
|
|
llm = LLM(model="amazon/MistralLite",) |
|
|
|
outputs = llm.generate(prompts, sampling_params) |
|
|
|
# Print the outputs. |
|
for output in outputs: |
|
prompt = output.prompt |
|
generated_text = output.outputs[0].text |
|
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}") |
|
``` |
|
|
|
## Limitations ## |
|
Before using the MistralLite model, it is important to perform your own independent assessment, and take measures to ensure that your use would comply with your own specific quality control practices and standards, and that your use would comply with the local rules, laws, regulations, licenses and terms that apply to you, and your content. |
|
|