Transformers
GGUF
English
llama
Files changed (1) hide show
  1. README.md +4 -4
README.md CHANGED
@@ -160,7 +160,7 @@ pip3 install huggingface-hub>=0.17.1
160
  Then you can download any individual model file to the current directory, at high speed, with a command like this:
161
 
162
  ```shell
163
- huggingface-cli download TheBloke/Llama-2-7B-32K-Instruct-GGUF llama-2-7b-32k-instruct.q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
164
  ```
165
 
166
  <details>
@@ -183,7 +183,7 @@ pip3 install hf_transfer
183
  And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
184
 
185
  ```shell
186
- HUGGINGFACE_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/Llama-2-7B-32K-Instruct-GGUF llama-2-7b-32k-instruct.q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
187
  ```
188
 
189
  Windows CLI users: Use `set HUGGINGFACE_HUB_ENABLE_HF_TRANSFER=1` before running the download command.
@@ -196,7 +196,7 @@ Windows CLI users: Use `set HUGGINGFACE_HUB_ENABLE_HF_TRANSFER=1` before running
196
  Make sure you are using `llama.cpp` from commit [d0cee0d36d5be95a0d9088b674dbb27354107221](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later.
197
 
198
  ```shell
199
- ./main -ngl 32 -m llama-2-7b-32k-instruct.q4_K_M.gguf --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "[INST]\n{prompt}\n[\INST]"
200
  ```
201
 
202
  Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
@@ -236,7 +236,7 @@ CT_METAL=1 pip install ctransformers>=0.2.24 --no-binary ctransformers
236
  from ctransformers import AutoModelForCausalLM
237
 
238
  # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
239
- llm = AutoModelForCausalLM.from_pretrained("TheBloke/Llama-2-7B-32K-Instruct-GGUF", model_file="llama-2-7b-32k-instruct.q4_K_M.gguf", model_type="llama", gpu_layers=50)
240
 
241
  print(llm("AI is going to"))
242
  ```
 
160
  Then you can download any individual model file to the current directory, at high speed, with a command like this:
161
 
162
  ```shell
163
+ huggingface-cli download TheBloke/Llama-2-7B-32K-Instruct-GGUF llama-2-7b-32k-instruct.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
164
  ```
165
 
166
  <details>
 
183
  And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
184
 
185
  ```shell
186
+ HUGGINGFACE_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/Llama-2-7B-32K-Instruct-GGUF llama-2-7b-32k-instruct.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
187
  ```
188
 
189
  Windows CLI users: Use `set HUGGINGFACE_HUB_ENABLE_HF_TRANSFER=1` before running the download command.
 
196
  Make sure you are using `llama.cpp` from commit [d0cee0d36d5be95a0d9088b674dbb27354107221](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later.
197
 
198
  ```shell
199
+ ./main -ngl 32 -m llama-2-7b-32k-instruct.Q4_K_M.gguf --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "[INST]\n{prompt}\n[\INST]"
200
  ```
201
 
202
  Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
 
236
  from ctransformers import AutoModelForCausalLM
237
 
238
  # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
239
+ llm = AutoModelForCausalLM.from_pretrained("TheBloke/Llama-2-7B-32K-Instruct-GGUF", model_file="llama-2-7b-32k-instruct.Q4_K_M.gguf", model_type="llama", gpu_layers=50)
240
 
241
  print(llm("AI is going to"))
242
  ```