Upload README.md
Browse files
README.md
ADDED
@@ -0,0 +1,371 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: https://huggingface.co/MayaPH/GodziLLa2-70B
|
3 |
+
datasets:
|
4 |
+
- mlabonne/guanaco-llama2-1k
|
5 |
+
inference: false
|
6 |
+
license: llama2
|
7 |
+
model_creator: MayaPH
|
8 |
+
model_name: GodziLLa2 70B
|
9 |
+
model_type: llama
|
10 |
+
pipeline_tag: text-generation
|
11 |
+
prompt_template: 'Below is an instruction that describes a task. Write a response
|
12 |
+
that appropriately completes the request.
|
13 |
+
|
14 |
+
|
15 |
+
### Instruction:
|
16 |
+
|
17 |
+
{prompt}
|
18 |
+
|
19 |
+
|
20 |
+
### Response:
|
21 |
+
|
22 |
+
'
|
23 |
+
quantized_by: TheBloke
|
24 |
+
tags:
|
25 |
+
- merge
|
26 |
+
- mix
|
27 |
+
- cot
|
28 |
+
---
|
29 |
+
|
30 |
+
<!-- header start -->
|
31 |
+
<!-- 200823 -->
|
32 |
+
<div style="width: auto; margin-left: auto; margin-right: auto">
|
33 |
+
<img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
|
34 |
+
</div>
|
35 |
+
<div style="display: flex; justify-content: space-between; width: 100%;">
|
36 |
+
<div style="display: flex; flex-direction: column; align-items: flex-start;">
|
37 |
+
<p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
|
38 |
+
</div>
|
39 |
+
<div style="display: flex; flex-direction: column; align-items: flex-end;">
|
40 |
+
<p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
|
41 |
+
</div>
|
42 |
+
</div>
|
43 |
+
<div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
|
44 |
+
<hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
|
45 |
+
<!-- header end -->
|
46 |
+
|
47 |
+
# GodziLLa2 70B - AWQ
|
48 |
+
- Model creator: [MayaPH](https://huggingface.co/mayaph)
|
49 |
+
- Original model: [GodziLLa2 70B](https://huggingface.co/MayaPH/GodziLLa2-70B)
|
50 |
+
|
51 |
+
<!-- description start -->
|
52 |
+
## Description
|
53 |
+
|
54 |
+
This repo contains AWQ model files for [MayaPH's GodziLLa2 70B](https://huggingface.co/MayaPH/GodziLLa2-70B).
|
55 |
+
|
56 |
+
|
57 |
+
### About AWQ
|
58 |
+
|
59 |
+
AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference.
|
60 |
+
|
61 |
+
It is also now supported by continuous batching server [vLLM](https://github.com/vllm-project/vllm), allowing use of AWQ models for high-throughput concurrent inference in multi-user server scenarios. Note that, at the time of writing, overall throughput is still lower than running vLLM with unquantised models, however using AWQ enables using much smaller GPUs which can lead to easier deployment and overall cost savings. For example, a 70B model can be run on 1 x 48GB GPU instead of 2 x 80GB.
|
62 |
+
<!-- description end -->
|
63 |
+
<!-- repositories-available start -->
|
64 |
+
## Repositories available
|
65 |
+
|
66 |
+
* [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/GodziLLa2-70B-AWQ)
|
67 |
+
* [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/GodziLLa2-70B-GPTQ)
|
68 |
+
* [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/GodziLLa2-70B-GGUF)
|
69 |
+
* [MayaPH's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/MayaPH/GodziLLa2-70B)
|
70 |
+
<!-- repositories-available end -->
|
71 |
+
|
72 |
+
<!-- prompt-template start -->
|
73 |
+
## Prompt template: Alpaca
|
74 |
+
|
75 |
+
```
|
76 |
+
Below is an instruction that describes a task. Write a response that appropriately completes the request.
|
77 |
+
|
78 |
+
### Instruction:
|
79 |
+
{prompt}
|
80 |
+
|
81 |
+
### Response:
|
82 |
+
|
83 |
+
```
|
84 |
+
|
85 |
+
<!-- prompt-template end -->
|
86 |
+
|
87 |
+
|
88 |
+
<!-- README_AWQ.md-provided-files start -->
|
89 |
+
## Provided files and AWQ parameters
|
90 |
+
|
91 |
+
For my first release of AWQ models, I am releasing 128g models only. I will consider adding 32g as well if there is interest, and once I have done perplexity and evaluation comparisons, but at this time 32g models are still not fully tested with AutoAWQ and vLLM.
|
92 |
+
|
93 |
+
Models are released as sharded safetensors files.
|
94 |
+
|
95 |
+
| Branch | Bits | GS | AWQ Dataset | Seq Len | Size |
|
96 |
+
| ------ | ---- | -- | ----------- | ------- | ---- |
|
97 |
+
| [main](https://huggingface.co/TheBloke/GodziLLa2-70B-AWQ/tree/main) | 4 | 128 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 36.61 GB
|
98 |
+
|
99 |
+
<!-- README_AWQ.md-provided-files end -->
|
100 |
+
|
101 |
+
<!-- README_AWQ.md-use-from-vllm start -->
|
102 |
+
## Serving this model from vLLM
|
103 |
+
|
104 |
+
Documentation on installing and using vLLM [can be found here](https://vllm.readthedocs.io/en/latest/).
|
105 |
+
|
106 |
+
- When using vLLM as a server, pass the `--quantization awq` parameter, for example:
|
107 |
+
|
108 |
+
```shell
|
109 |
+
python3 python -m vllm.entrypoints.api_server --model TheBloke/GodziLLa2-70B-AWQ --quantization awq
|
110 |
+
```
|
111 |
+
|
112 |
+
When using vLLM from Python code, pass the `quantization=awq` parameter, for example:
|
113 |
+
|
114 |
+
```python
|
115 |
+
from vllm import LLM, SamplingParams
|
116 |
+
|
117 |
+
prompts = [
|
118 |
+
"Hello, my name is",
|
119 |
+
"The president of the United States is",
|
120 |
+
"The capital of France is",
|
121 |
+
"The future of AI is",
|
122 |
+
]
|
123 |
+
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
|
124 |
+
|
125 |
+
llm = LLM(model="TheBloke/GodziLLa2-70B-AWQ", quantization="awq")
|
126 |
+
|
127 |
+
outputs = llm.generate(prompts, sampling_params)
|
128 |
+
|
129 |
+
# Print the outputs.
|
130 |
+
for output in outputs:
|
131 |
+
prompt = output.prompt
|
132 |
+
generated_text = output.outputs[0].text
|
133 |
+
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
|
134 |
+
```
|
135 |
+
<!-- README_AWQ.md-use-from-vllm start -->
|
136 |
+
|
137 |
+
<!-- README_AWQ.md-use-from-python start -->
|
138 |
+
## How to use this AWQ model from Python code
|
139 |
+
|
140 |
+
### Install the necessary packages
|
141 |
+
|
142 |
+
Requires: [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) 0.0.2 or later
|
143 |
+
|
144 |
+
```shell
|
145 |
+
pip3 install autoawq
|
146 |
+
```
|
147 |
+
|
148 |
+
If you have problems installing [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) using the pre-built wheels, install it from source instead:
|
149 |
+
|
150 |
+
```shell
|
151 |
+
pip3 uninstall -y autoawq
|
152 |
+
git clone https://github.com/casper-hansen/AutoAWQ
|
153 |
+
cd AutoAWQ
|
154 |
+
pip3 install .
|
155 |
+
```
|
156 |
+
|
157 |
+
### You can then try the following example code
|
158 |
+
|
159 |
+
```python
|
160 |
+
from awq import AutoAWQForCausalLM
|
161 |
+
from transformers import AutoTokenizer
|
162 |
+
|
163 |
+
model_name_or_path = "TheBloke/GodziLLa2-70B-AWQ"
|
164 |
+
|
165 |
+
# Load model
|
166 |
+
model = AutoAWQForCausalLM.from_quantized(model_name_or_path, fuse_layers=True,
|
167 |
+
trust_remote_code=False, safetensors=True)
|
168 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=False)
|
169 |
+
|
170 |
+
prompt = "Tell me about AI"
|
171 |
+
prompt_template=f'''Below is an instruction that describes a task. Write a response that appropriately completes the request.
|
172 |
+
|
173 |
+
### Instruction:
|
174 |
+
{prompt}
|
175 |
+
|
176 |
+
### Response:
|
177 |
+
|
178 |
+
'''
|
179 |
+
|
180 |
+
print("\n\n*** Generate:")
|
181 |
+
|
182 |
+
tokens = tokenizer(
|
183 |
+
prompt_template,
|
184 |
+
return_tensors='pt'
|
185 |
+
).input_ids.cuda()
|
186 |
+
|
187 |
+
# Generate output
|
188 |
+
generation_output = model.generate(
|
189 |
+
tokens,
|
190 |
+
do_sample=True,
|
191 |
+
temperature=0.7,
|
192 |
+
top_p=0.95,
|
193 |
+
top_k=40,
|
194 |
+
max_new_tokens=512
|
195 |
+
)
|
196 |
+
|
197 |
+
print("Output: ", tokenizer.decode(generation_output[0]))
|
198 |
+
|
199 |
+
# Inference can also be done using transformers' pipeline
|
200 |
+
from transformers import pipeline
|
201 |
+
|
202 |
+
print("*** Pipeline:")
|
203 |
+
pipe = pipeline(
|
204 |
+
"text-generation",
|
205 |
+
model=model,
|
206 |
+
tokenizer=tokenizer,
|
207 |
+
max_new_tokens=512,
|
208 |
+
do_sample=True,
|
209 |
+
temperature=0.7,
|
210 |
+
top_p=0.95,
|
211 |
+
top_k=40,
|
212 |
+
repetition_penalty=1.1
|
213 |
+
)
|
214 |
+
|
215 |
+
print(pipe(prompt_template)[0]['generated_text'])
|
216 |
+
```
|
217 |
+
<!-- README_AWQ.md-use-from-python end -->
|
218 |
+
|
219 |
+
<!-- README_AWQ.md-compatibility start -->
|
220 |
+
## Compatibility
|
221 |
+
|
222 |
+
The files provided are tested to work with [AutoAWQ](https://github.com/casper-hansen/AutoAWQ), and [vLLM](https://github.com/vllm-project/vllm).
|
223 |
+
|
224 |
+
[Huggingface Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) is not yet compatible with AWQ, but a PR is open which should bring support soon: [TGI PR #781](https://github.com/huggingface/text-generation-inference/issues/781).
|
225 |
+
<!-- README_AWQ.md-compatibility end -->
|
226 |
+
|
227 |
+
<!-- footer start -->
|
228 |
+
<!-- 200823 -->
|
229 |
+
## Discord
|
230 |
+
|
231 |
+
For further support, and discussions on these models and AI in general, join us at:
|
232 |
+
|
233 |
+
[TheBloke AI's Discord server](https://discord.gg/theblokeai)
|
234 |
+
|
235 |
+
## Thanks, and how to contribute
|
236 |
+
|
237 |
+
Thanks to the [chirper.ai](https://chirper.ai) team!
|
238 |
+
|
239 |
+
Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
|
240 |
+
|
241 |
+
I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
|
242 |
+
|
243 |
+
If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
|
244 |
+
|
245 |
+
Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
|
246 |
+
|
247 |
+
* Patreon: https://patreon.com/TheBlokeAI
|
248 |
+
* Ko-Fi: https://ko-fi.com/TheBlokeAI
|
249 |
+
|
250 |
+
**Special thanks to**: Aemon Algiz.
|
251 |
+
|
252 |
+
**Patreon special mentions**: Alicia Loh, Stephen Murray, K, Ajan Kanaga, RoA, Magnesian, Deo Leter, Olakabola, Eugene Pentland, zynix, Deep Realms, Raymond Fosdick, Elijah Stavena, Iucharbius, Erik Bjäreholt, Luis Javier Navarrete Lozano, Nicholas, theTransient, John Detwiler, alfie_i, knownsqashed, Mano Prime, Willem Michiel, Enrico Ros, LangChain4j, OG, Michael Dempsey, Pierre Kircher, Pedro Madruga, James Bentley, Thomas Belote, Luke @flexchar, Leonard Tan, Johann-Peter Hartmann, Illia Dulskyi, Fen Risland, Chadd, S_X, Jeff Scroggin, Ken Nordquist, Sean Connelly, Artur Olbinski, Swaroop Kallakuri, Jack West, Ai Maven, David Ziegler, Russ Johnson, transmissions 11, John Villwock, Alps Aficionado, Clay Pascal, Viktor Bowallius, Subspace Studios, Rainer Wilmers, Trenton Dambrowitz, vamX, Michael Levine, 준교 김, Brandon Frisco, Kalila, Trailburnt, Randy H, Talal Aujan, Nathan Dryer, Vadim, 阿明, ReadyPlayerEmma, Tiffany J. Kim, George Stoitzev, Spencer Kim, Jerry Meng, Gabriel Tamborski, Cory Kujawski, Jeffrey Morgan, Spiking Neurons AB, Edmond Seymore, Alexandros Triantafyllidis, Lone Striker, Cap'n Zoog, Nikolai Manek, danny, ya boyyy, Derek Yates, usrbinkat, Mandus, TL, Nathan LeClaire, subjectnull, Imad Khwaja, webtim, Raven Klaugh, Asp the Wyvern, Gabriel Puliatti, Caitlyn Gatomon, Joseph William Delisle, Jonathan Leane, Luke Pendergrass, SuperWojo, Sebastain Graf, Will Dee, Fred von Graf, Andrey, Dan Guido, Daniel P. Andersen, Nitin Borwankar, Elle, Vitor Caleffi, biorpg, jjj, NimbleBox.ai, Pieter, Matthew Berman, terasurfer, Michael Davis, Alex, Stanislav Ovsiannikov
|
253 |
+
|
254 |
+
|
255 |
+
Thank you to all my generous patrons and donaters!
|
256 |
+
|
257 |
+
And thank you again to a16z for their generous grant.
|
258 |
+
|
259 |
+
<!-- footer end -->
|
260 |
+
|
261 |
+
# Original model card: MayaPH's GodziLLa2 70B
|
262 |
+
|
263 |
+
|
264 |
+
<img src="https://drive.google.com/uc?export=view&id=1D8wxXkS1nsq3uqbOzOLwgx1cLJhY1nvN" alt="GodziLLa2-70B">
|
265 |
+
Released August 11, 2023
|
266 |
+
|
267 |
+
## Model Description
|
268 |
+
GodziLLa 2 70B is an experimental combination of various proprietary LoRAs from Maya Philippines and [Guanaco LLaMA 2 1K dataset](https://huggingface.co/datasets/mlabonne/guanaco-llama2-1k), with LLaMA 2 70B. This model's primary purpose is to stress test the limitations of composite, instruction-following LLMs and observe its performance with respect to other LLMs available on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). This model debuted in the leaderboard at rank #4 (August 17, 2023) and operates under the Llama 2 license.
|
269 |
+
![Godzilla Happy GIF](https://i.pinimg.com/originals/81/3a/e0/813ae09a30f0bc44130cd2c834fe2eba.gif)
|
270 |
+
|
271 |
+
## Open LLM Leaderboard Metrics
|
272 |
+
| Metric | Value |
|
273 |
+
|-----------------------|-------|
|
274 |
+
| MMLU (5-shot) | 69.88 |
|
275 |
+
| ARC (25-shot) | 71.42 |
|
276 |
+
| HellaSwag (10-shot) | 87.53 |
|
277 |
+
| TruthfulQA (0-shot) | 61.54 |
|
278 |
+
| Average | 72.59 |
|
279 |
+
|
280 |
+
According to the leaderboard description, here are the benchmarks used for the evaluation:
|
281 |
+
- [MMLU](https://arxiv.org/abs/2009.03300) (5-shot) - a test to measure a text model’s multitask accuracy. The test covers 57 tasks including elementary mathematics, US history, computer science, law, and more.
|
282 |
+
- [AI2 Reasoning Challenge](https://arxiv.org/abs/1803.05457) -ARC- (25-shot) - a set of grade-school science questions.
|
283 |
+
- [HellaSwag](https://arxiv.org/abs/1905.07830) (10-shot) - a test of commonsense inference, which is easy for humans (~95%) but challenging for SOTA models.
|
284 |
+
- [TruthfulQA](https://arxiv.org/abs/2109.07958) (0-shot) - a test to measure a model’s propensity to reproduce falsehoods commonly found online.
|
285 |
+
|
286 |
+
A detailed breakdown of the evaluation can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_MayaPH__GodziLLa2-70B). Huge thanks to [@thomwolf](https://huggingface.co/thomwolf).
|
287 |
+
|
288 |
+
## Leaderboard Highlights (as of August 17, 2023)
|
289 |
+
- Godzilla 2 70B debuts at 4th place worldwide in the Open LLM Leaderboard.
|
290 |
+
- Godzilla 2 70B ranks #3 in the ARC challenge.
|
291 |
+
- Godzilla 2 70B ranks #5 in the TruthfulQA benchmark.
|
292 |
+
- *Godzilla 2 70B beats GPT-3.5 (ChatGPT) in terms of average performance and the HellaSwag benchmark (87.53 > 85.5).
|
293 |
+
- *Godzilla 2 70B outperforms GPT-3.5 (ChatGPT) and GPT-4 on the TruthfulQA benchmark (61.54 for G2-70B, 47 for GPT-3.5, 59 for GPT-4).
|
294 |
+
- *Godzilla 2 70B is on par with GPT-3.5 (ChatGPT) on the MMLU benchmark (<0.12%).
|
295 |
+
|
296 |
+
*Based on a [leaderboard clone](https://huggingface.co/spaces/gsaivinay/open_llm_leaderboard) with GPT-3.5 and GPT-4 included.
|
297 |
+
|
298 |
+
### Reproducing Evaluation Results
|
299 |
+
*Instruction template taken from [Platypus 2 70B instruct](https://huggingface.co/garage-bAInd/Platypus2-70B-instruct).
|
300 |
+
|
301 |
+
Install LM Evaluation Harness:
|
302 |
+
```
|
303 |
+
# clone repository
|
304 |
+
git clone https://github.com/EleutherAI/lm-evaluation-harness.git
|
305 |
+
# change to repo directory
|
306 |
+
cd lm-evaluation-harness
|
307 |
+
# check out the correct commit
|
308 |
+
git checkout b281b0921b636bc36ad05c0b0b0763bd6dd43463
|
309 |
+
# install
|
310 |
+
pip install -e .
|
311 |
+
```
|
312 |
+
|
313 |
+
ARC:
|
314 |
+
```
|
315 |
+
python main.py --model hf-causal-experimental --model_args pretrained=MayaPH/GodziLLa2-70B --tasks arc_challenge --batch_size 1 --no_cache --write_out --output_path results/G270B/arc_challenge_25shot.json --device cuda --num_fewshot 25
|
316 |
+
```
|
317 |
+
|
318 |
+
HellaSwag:
|
319 |
+
```
|
320 |
+
python main.py --model hf-causal-experimental --model_args pretrained=MayaPH/GodziLLa2-70B --tasks hellaswag --batch_size 1 --no_cache --write_out --output_path results/G270B/hellaswag_10shot.json --device cuda --num_fewshot 10
|
321 |
+
```
|
322 |
+
|
323 |
+
MMLU:
|
324 |
+
```
|
325 |
+
python main.py --model hf-causal-experimental --model_args pretrained=MayaPH/GodziLLa2-70B --tasks hendrycksTest-* --batch_size 1 --no_cache --write_out --output_path results/G270B/mmlu_5shot.json --device cuda --num_fewshot 5
|
326 |
+
```
|
327 |
+
|
328 |
+
TruthfulQA:
|
329 |
+
```
|
330 |
+
python main.py --model hf-causal-experimental --model_args pretrained=MayaPH/GodziLLa2-70B --tasks truthfulqa_mc --batch_size 1 --no_cache --write_out --output_path results/G270B/truthfulqa_0shot.json --device cuda
|
331 |
+
```
|
332 |
+
|
333 |
+
### Prompt Template
|
334 |
+
```
|
335 |
+
### Instruction:
|
336 |
+
|
337 |
+
<prompt> (without the <>)
|
338 |
+
|
339 |
+
### Response:
|
340 |
+
```
|
341 |
+
|
342 |
+
## Technical Considerations
|
343 |
+
|
344 |
+
When using GodziLLa 2 70B, kindly take note of the following:
|
345 |
+
- The default precision is `fp32`, and the total file size that would be loaded onto the RAM/VRAM is around 275 GB. Consider using a lower precision (fp16, int8, int4) to save memory.
|
346 |
+
- To further save on memory, set the `low_cpu_mem_usage` argument to True.
|
347 |
+
- If you wish to use a quantized version of GodziLLa2-70B, you can either access TheBloke's [GPTQ](https://huggingface.co/TheBloke/GodziLLa2-70B-GPTQ) or [GGML](https://huggingface.co/TheBloke/GodziLLa2-70B-GGML) version of GodziLLa2-70B.
|
348 |
+
- [GodziLLa2-70B-GPTQ](https://huggingface.co/TheBloke/GodziLLa2-70B-GPTQ#description) is available in 4-bit and 3-bit
|
349 |
+
- [GodziLLa2-70B-GGML](https://huggingface.co/TheBloke/GodziLLa2-70B-GGML#provided-files) is available in 8-bit, 6-bit, 5-bit, 4-bit, 3-bit, and 2-bit
|
350 |
+
|
351 |
+
## Ethical Considerations
|
352 |
+
When using GodziLLa 2 70B, it is important to consider the following ethical considerations:
|
353 |
+
|
354 |
+
1. **Privacy and Security:** Avoid sharing sensitive personal information while interacting with the model. The model does not have privacy safeguards, so exercise caution when discussing personal or confidential matters.
|
355 |
+
|
356 |
+
2. **Fairness and Bias:** The model's responses may reflect biases present in the training data. Be aware of potential biases and make an effort to evaluate responses critically and fairly.
|
357 |
+
|
358 |
+
3. **Transparency:** The model operates as a predictive text generator based on patterns learned from the training data. The model's inner workings and the specific training data used are proprietary and not publicly available.
|
359 |
+
|
360 |
+
4. **User Responsibility:** Users should take responsibility for their own decisions and not solely rely on the information provided by the model. Consult with the appropriate professionals or reliable sources for specific advice or recommendations.
|
361 |
+
|
362 |
+
5. **NSFW Content:** The model is a merge of various datasets and LoRA adapters. It is highly likely that the resulting model contains uncensored content that may include, but is not limited to, violence, gore, explicit language, and sexual content. If you plan to further refine this model for safe/aligned usage, you are highly encouraged to implement guardrails along with it.
|
363 |
+
|
364 |
+
## Further Information
|
365 |
+
For additional information or inquiries about GodziLLa 2 70B, please contact the Maya Philippines iOps Team via jasper.catapang@maya.ph.
|
366 |
+
|
367 |
+
## Disclaimer
|
368 |
+
GodziLLa 2 70B is an AI language model from Maya Philippines. It is provided "as is" without warranty of any kind, express or implied. The model developers and Maya Philippines shall not be liable for any direct or indirect damages arising from the use of this model.
|
369 |
+
|
370 |
+
## Acknowledgments
|
371 |
+
The development of GodziLLa 2 70B was made possible by Maya Philippines and the curation of the various proprietary datasets and creation of the different proprietary LoRA adapters. Special thanks to mlabonne for the Guanaco dataset found [here](https://huggingface.co/datasets/mlabonne/guanaco-llama2-1k). Last but not least, huge thanks to [TheBloke](https://huggingface.co/TheBloke) for the quantized models, making our model easily accessible to a wider community.
|